Tutorial 12

1) Huffman Coding

Build the Huffman Tree associated with S = abbeeeecede and then give the encoding.

2) Run Length Encoding with Elias Gamma

- a) Encode the binary string 1111100000111100010000 using RLE with E_{γ} encoding for positive integers.
- b) Is it possible that the binary string 110001111101 was encoded using RLE with E_γ encoding for positive integers?

3) LZW Encoding

a) Encode the following message using LZW encoding. (Just leave integers in base 10)

ABABBABABAABA

b) Go through the steps of decoding the message once it has been encoded.

4) Burrows-Wheeler Transform

Performing the Burrows-Wheeler transform on S gives OOTRTON\$. What is S?