CS 240 — Data Structures and Data Management

Module 11: External Memory

Mark Petrick, Eric Schost

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2024

version 2024-07-29 23:13

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 1/38

Outline

@ External Memory
@ Motivation
@ Stream-based algorithms

@ External Dictionaries
@ a-b-trees
@ 2-4-trees and Red-Black Trees
@ B-trees

@ External Hashing

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024

Outline

@ External Memory
@ Motivation

M. Petrick, E. Schost (CS-UW) CS240 — Module 11

Different levels of memory

Recall the RAM model of a computer: Any access to a memory location
takes the same (constant) time.

This is not at all realistic!

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 2 /38

Different levels of memory
Recall the RAM model of a computer: Any access to a memory location
takes the same (constant) time.

This is not at all realistic!

A typical current computer architecture includes
o registers (very fast, very small)
@ cache L1, L2 (still fast, less small)
@ main memory

e disk or cloud (slow, very large)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 2 /38

Different levels of memory
Recall the RAM model of a computer: Any access to a memory location
takes the same (constant) time.

This is not at all realistic!

A typical current computer architecture includes
o registers (very fast, very small)
@ cache L1, L2 (still fast, less small)
@ main memory

e disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory
hierarchy into account, avoiding transfers as much as possible?

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 2 /38

Different levels of memory
Recall the RAM model of a computer: Any access to a memory location
takes the same (constant) time.

This is not at all realistic!

A typical current computer architecture includes
o registers (very fast, very small)
@ cache L1, L2 (still fast, less small)
@ main memory
]

disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory
hierarchy into account, avoiding transfers as much as possible?

Define a new computer model that models one such ‘gap’ across which we
must transfer.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 2 /38

The External-Memory Model (EMM)

(I I T I ey

external memory — size unbounded. Store input (size n) here.

transfer in blocks of B cells (slow)

(LI TTTTTTITTITITITIT]
internal memory — size M

(7 random access (fast)
®

CPU

Assumption: During a transfer, we automatically load a whole block (or
“page”). This is quite realistic.

New objective: revisit all algorithms/data structures with the objective of
minimizing block transfers (“probes”, “disk transfers”, “page loads")

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 3/38

Outline

@ External Memory

@ Stream-based algorithms

M. Petrick, E. Schost (CS-uw) CS240 — Module 11

Streams and external memory
Stream-based algorithms (with O(1) resets) use ©(g3) block transfers.

R T LT T LT T LT T I T T[T [T [k- - | external
[
"exmput for next block of input memory

transfer when empty transfer when full

top work on internal memory

tail

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 4 /38

Streams and external memory
Stream-based algorithms (with O(1) resets) use ©(g3) block transfers.

2 2 I R I 3 R S
-
"exmplﬁ for next block of input memory

transfer when empty transfer when full

.l... [T Dl
work on

internal memory
t0p tail

So can do the following with ©(5) block transfers:
@ Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch

@ Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore
(This assumes internal memory has O(|P|) space.)

@ Sorting: merge can be implemented with streams
~~» merge-sort uses O(g log n) block transfers (can be improved)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 4 /38

Outline

@ External Memory

@ External Dictionaries

M. Petrick, E. Schost (CS-UW) CS240 — Module 11

Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

@ Recall: AVL-trees were optimal in time and space in RAM model
e O(log n) run-time = O(log n) block transfers per operation

@ But: Inserts happen at varying locations of the tree.
~> nearby nodes are unlikely to be on the same block
~ typically ©(log n) block transfers per operation

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 5/38

Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

@ Recall: AVL-trees were optimal in time and space in RAM model
@ O(logn) run-time = O(log n) block transfers per operation

@ But: Inserts happen at varying locations of the tree.
~» nearby nodes are unlikely to be on the same block
~ typically ©(log n) block transfers per operation

@ We would like to have fewer block transfers.

» Goal: O(logg n) block transfers.

» Does this really make a difference?

» Consider ‘typical’' values: n = 2%, B~ 215
What is log n vs. logg n?

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 5/38

Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

@ Recall: AVL-trees were optimal in time and space in RAM model
@ O(logn) run-time = O(log n) block transfers per operation
@ But: Inserts happen at varying locations of the tree.

~» nearby nodes are unlikely to be on the same block
~ typically ©(log n) block transfers per operation

@ We would like to have fewer block transfers.

» Goal: O(logg n) block transfers.

» Does this really make a difference?

» Consider ‘typical’' values: n = 2%, B~ 215
What is log n vs. logg n?

Better solution: design a tree-structure that guarantees that many nodes
on search-paths are within one block.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 5/38

Idealized structure

Idea: Store complete subtrees with log b levels in one block of memory.

(b € ©(B) is maximal so that these fit into one block.)
@ Each block/subtree then covers height log b
logn

= Search-path hits log b
e Since b € ©(B), we have log, n € ©(logg n) (why?)

blocks = logy, n block-transfers

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 6 /38

Idealized structure

Idea: Store complete subtrees with log b levels in one block of memory.

(b € ©(B) is maximal so that these fit into one block.)
@ Each block/subtree then covers height log b
logn

= Search-path hits log b
e Since b € ©(B), we have log, n € ©(logg n) (why?)

blocks = logy, n block-transfers

Idea: View the entire content of a block as one node.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 6 /38

Towards a-b-trees

Define multiway-tree: A node can store multiple keys.

Definition: A d-node stores d keys, has d+1 subtrees, and stored keys
are between the keys in the subtrees.

‘ key kl}. ‘ key k2 ‘ -\Lkey k3 ‘
N N

keys <kj ki< keys <ka ko< keys <k3 k3< keys

We always have one more subtree than keys (but subtrees may be empty).

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 7 /38

Towards a-b-trees

Define multiway-tree: A node can store multiple keys.

Definition: A d-node stores d keys, has d+1 subtrees, and stored keys
are between the keys in the subtrees.

[key ki]e[key ko [e]key k3]
b N

keys <ki k1< keys <kz ko< keys <k3 k3 < keys

We always have one more subtree than keys (but subtrees may be empty).

e To allow insert/delete, we permit a varying numbers of keys in nodes
(within limits)
@ We also rigidly restrict where empty subtrees may be.

@ This gives much smaller height than for AVL-trees
= fewer block transfers

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 7 /38

a-b-trees

Definition: An a-b-tree (for some b > 3 and 2 < a < [2]) satisfies
@ Every non-root is a d-node for some a—1 < d < b—1.
> Between a and b subtrees, between a—1 and b—1 keys.
@ The root is a d-node for 1 < d < b—1.
» Between 2 and b subtrees, between 1 and b—1 keys.

© All empty subtrees are at the same level.

Example: A 2-4-tree of height 1.

E

For 2-4-trees, every node has between 1 and 3 keys.

0

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 8 /38

a-b-tree Example

Example: A 3-5-tree of height 2.

50]56]
10]12] [16]18] [22]24] [28[30]32] [34[36] [40[42] [46]48] [52[54] [58]60
bod bbbl e d el i dbdd

Typically we will specify the order b and then set a = [15’]

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 9 /38

a-b-tree Example

Example: A 3-6-tree of height 2.

|14|20
10]12 16|18 22124 28130 34|36 40]42 46]148| |52|54]56|58|60| |64|66
M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 10 / 38

a-b-tree Example

Example: A 3-6-tree of height 2.

|14|20

10

12

16

18

22

24

28

30

34

36

40

42

46

48

52

54

56

58

60

64

66

Note: With small height we can store many keys.

A 3-6-tree of height 2 can store up to (1 + 6 + 36) - 5 = 215 keys.

M. Petrick, E. Schost (CS-UW)

CS240 — Module 11

Spring 2024

10 / 38

a-b-tree Height
Theorem: An a-b-tree with n keys has O(log,(n)) height.
Proof: How many keys must an a-b-tree of height h have?

Level Nodes
1 >2
2 > 2a
3 > 232
h >2a"1 nin®n tnl

(ZJ(Z)00@000@00&‘)@00@0@@@@@00@@ (Z)@@00&)&000@0@0@@0@0@@00(2‘1(2‘\(00‘)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 11 /38

a-b-tree Height
Theorem: An a-b-tree with n keys has O(log,(n)) height.
Proof: How many keys must an a-b-tree of height h have?

Level Nodes
1 > 2
2 > 2a
3 > 232
h 2 2ah—1

(ZJ(Z)00@000@00&‘!@00@0@0@@@00@@ (Z)@@000‘)&30000090@@000@(0(00(2‘1(2‘\(00‘)

ah—1
a—1

h h—1
non-root nodes > 223"*1 =2 Z d=2
i=1 j=0

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 11 /38

a-b-tree Height
Theorem: An a-b-tree with n keys has O(log,(n)) height.
Proof: How many keys must an a-b-tree of height h have?

Level Nodes
1 > 2
2 > 2a
3 > 232
h 223,171 || || [[]1] [[11] [[]1] [[]]
POODOORDOO0DDOODDOBODOOADOD DO OO D OP B BOO OO O O 0 DO O OO O 0P 9 O
h . h-1 Sh 1
non-root nodes > 2271 =2 =2
> 2 29 =2
i=1 Jj=0
ah—1
n=#KVPs > 1 + (a—1) 2 =2a" -1
A a—1

~———
>a—1 KVPs at non-root

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 11 /38

a-b-tree Height
Theorem: An a-b-tree with n keys has O(log,(n)) height.
Proof: How many keys must an a-b-tree of height h have?

Level Nodes
1 > 2
2 > 2a
3 > 232
h 223,171 || || [[]1] [[11] [[]1] |
POODOORDOO0DDOODDOBODOOADOD DO OO D OP B BOO OO O O 0 DO O OO O 0P 9 O
h . h-1 Sh 1
non-root nodes > 2271 =2 =2
> 2 29 =2
i=1 Jj=0
ah—1
n=#KVPs > 1 + (a—1) 2 =2a" -1
A a—1

~———
root >a—1 KVPs at non-root

Therefore h < log, (*51).

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 11 /38

a-b-tree Operations

Search is similar to BST:
@ Compare search-key to keys at node

@ If not found, continue in appropriate subtree until empty

Example: search(15)

ﬁ

[

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 12 /38

a-b-tree Operations

Search is similar to BST:
@ Compare search-key to keys at node

@ If not found, continue in appropriate subtree until empty

Example: search(15)

ﬁ

[

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 12 /38

a-b-tree Operations

Search is similar to BST:
@ Compare search-key to keys at node

@ If not found, continue in appropriate subtree until empty

Example: search(15) not found

ﬁ

[

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 12 /38

a-b-tree search

abTree::search(k)
z < root, p < NULL // p: parent of z
while z is not NULL
let (To, k1, ..., kd, Tq) be key-subtree list at z
if k> k
i < maximal index such that k; < k
if ki = k then return KVP at k;
else p + z, z < root of T;
else p «+ z, z < root of Ty
return “not found, would be in p”

© NSO AW

e # visited nodes: O(log, n) (one per level)
e Note: Finding i is not constant time (depending on b)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 13 /38

a-b tree insert

@ Do abTree::search and add key and empty subtree at leaf.

Example (2-4-tree): insert(10)

14

B mE

M. Petrick, E. Schost (CS-UW) CS240 — Module 11

Spring 2024

14 / 38

a-b tree insert

@ Do abTree::search and add key and empty subtree at leaf.

o If the leaf had room then we are done.

Example (2-4-tree): insert(10)

14

P, e
0] o 0 0 0

M. Petrick, E. Schost (CS-UW) CS240 — Module 11

Spring 2024

14 / 38

a-b tree insert

]
o Else overflow: More keys/subtrees than permitted.
°

Resolve overflow by node splitting.

Example (2-4-tree): insert(17)

|5|9|12|

Do abTree::search and add key and empty subtree at leaf.
If the leaf had room then we are done.

13

17

FEL J|68|\ 10

M. Petrick, E. Schost (CS-UW)

CS240 — Module 11

0

Spring 2024

a-b tree insert

@ Do abTree::search and add key and empty subtree at leaf.
@ If the leaf had room then we are done.

o Else overflow: More keys/subtrees than permitted.

@ Resolve overflow by node splitting.

Example (2-4-tree): insert(17)

|5|9|12|16|

F4 [6]8] [10[11] [13]14
0 J \Q) 0 0 0 0 0 0

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024

14 / 38

a-b tree insert

@ Do abTree::search and add key and empty subtree at leaf.
@ If the leaf had room then we are done.

o Else overflow: More keys/subtrees than permitted.

@ Resolve overflow by node splitting.

Example (2-4-tree): insert(17)

5[9]112|16

F4 [6]8] [10[11] [13]14

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024

14 / 38

a-b tree insert

@ Do abTree::search and add key and empty subtree at leaf.
@ If the leaf had room then we are done.

o Else overflow: More keys/subtrees than permitted.

@ Resolve overflow by node splitting.

Example (2-4-tree): insert(17)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 14 / 38

a-b-tree insert

abTree::insert(k)

1. z <« abTree:search(k) // z: leaf where k should be
2. Add k and an empty subtree in key-subtree-list of z

3. while z has b keys (overflow ~~ node split)

4. Let (To, k1, ..., kb, Tp) be key-subtree list at v

5. if (z has no parent) create a parent of z without KVPs
6 move upper median k,, of keys to parent p of z

7 z' < new node with <T0,k1,...,km,17 Tm71>

8 z" < new node with (T, k11, - -, Kb, Tp)

9. Replace (z) by (Z’, ky, Zz"”) in key-subtree-list of p

10. Z4p

p
T =5 N
2
To/ Ty Tx T3 T, To Th T 3 Ta

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 15 / 38

a-b-tree insert

Example: insert(55) in a 3-6-tree:

|14|20
10|12 16|18 22|24 28130 34136 40|42 46|48| |52|54|55]|5658|60| |64|66
)
M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 16 / 38

a-b-tree insert

Example: insert(55) in a 3-6-tree:

|14|20 26|32 44150 56|62|
10|12 16|18 22|24 28130 34136 40142 46(48| |52|54|55] |58 |60 6466

o Node split = new nodes have > [(b—1)/2] = [b/2] — 1 keys

@ Since we know a < [b/2], this is > a—1 keys as required.

M. Petrick, E. Schost (CS-UW)

CS240 — Module 11

Spring 2024

16 / 38

Towards 2-4-tree Deletion

o For deletion, we symmetrically will have to handle underflow

(too few keys/subtrees)

@ Crucial ingredient for this: immediate sibling

R

0

5912

16

¥—>| 13[14

@ Observe: Any node except the root has an immediate sibling.

M. Petrick, E. Schost (CS-UW) CS240 —

Module 11 Spring 2024

17 / 38

2-4-tree Deletion

Example: delete(43)

@ abTree::search, then trade with successor if KVP is not at a leaf.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 18 / 38

2-4-tree Deletion

Example: delete(43)

@ abTree::search, then trade with successor if KVP is not at a leaf.
o If underflow:

18

w2 [i9 [

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 18 / 38

2-4-tree Deletion

Example: delete(43)

@ abTree::search, then trade with successor if KVP is not at a leaf.
o If underflow:
» If immediate sibling has extras, rotate/transfer

18

w2 [i9 [

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 18 / 38

2-4-tree Deletion

Example: delete(19)

@ abTree::search, then trade with successor if KVP is not at a leaf.
o If underflow:
» If immediate sibling has extras, rotate/transfer

18

o 0 & @ E E (e

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 18 / 38

2-4-tree Deletion

Example: delete(19)

@ abTree::search, then trade with successor if KVP is not at a leaf.

o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 18 / 38

2-4-tree Deletion

Example: delete(19)

@ abTree::search, then trade with successor if KVP is not at a leaf.

o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 18 / 38

2-4-tree Deletion

Example: delete(42)

@ abTree::search, then trade with successor if KVP is not at a leaf.

o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 18 / 38

2-4-tree Deletion

Example: delete(42)
@ abTree::search, then trade with successor if KVP is not at a leaf.

o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

E NS

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 18 / 38

2-4-tree Deletion

Example: delete(42)

@ abTree::search, then trade with successor if KVP is not at a leaf.

o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

56

] Y [

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024

18 / 38

2-4-tree Deletion

Example: delete(42)
@ abTree::search, then trade with successor if KVP is not at a leaf.

o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 18 / 38

2-4-tree Deletion

Example: delete(42)
@ abTree::search, then trade with successor if KVP is not at a leaf.

o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 18 / 38

Deletion from a 2-4-tree

24 Tree:.delete(k)

1. v < 24Tree:search(k) // node containing k

2. if v is not leaf

3 swap k with its successor k' and v with leaf containing k’
4. delete k and one empty subtree in v

5. while v has 0 keys (underflow)

6. if parent p of v is NULL, delete v and break

7 if v has immediate sibling u with 2 or more keys (transfer/rotate)
8 transfer the key of v that is nearest to v to p

9. transfer the key of p between v and v to v

10. transfer the subtree of u that is nearest to v to v

11. break

12. else (merge & repeat)

13. u < immediate sibling of v

14. transfer the key of p between v and v to u
15. transfer the subtree of v to u

16. delete node v and set v «+ p

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 19 / 38

a-b-tree Summary

@ An a-b tree has height O(log, n)

e If a~ b/2, then this height-bound is tight.

» Level i contains at most b’ nodes
» Each node contains at most b — 1 KVPs
» So n < bt —1 and h e Q(log, n).

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 20 / 38

a-b-tree Summary

@ An a-b tree has height O(log, n)

e If a~ b/2, then this height-bound is tight.
» Level i contains at most b’ nodes

» Each node contains at most b — 1 KVPs
» So n < bt —1 and h e Q(log, n).
e search and insert visit O(log, n) nodes.

@ delete can also be implemented with O(log, n) node-visits.
But usually use lazy deletion—space is cheap in external memory.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 20 / 38

a-b-tree Summary

An a-b tree has height O(log, n)

If a = b/2, then this height-bound is tight.

» Level i contains at most b’ nodes
» Each node contains at most b — 1 KVPs
» So n < bt —1 and h e Q(log, n).

search and insert visit O(log, n) nodes.

delete can also be implemented with O(log, n) node-visits.
But usually use lazy deletion—space is cheap in external memory.

o How do we choose the order b? (Recall: a is usually [2].)
» Option 1: bsmall, eg. b=14
~ a new balanced BST, competetive with AVL-trees.
» Option 2: b big (but one node still fits into one block of memory)
~> a realization of ADT Dictionary for external memory

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 20 / 38

2-4-trees

Consider the special case of b =4 (hence a = 2):

F
@ We analyze here the runtime in the RAM-model
(include cost of operations in internal memory)

F{ 13]14]16
0 0

0 0 0 0

e Height is O(log n), operations visit O(log n) nodes.
@ Each node stores O(1) keys and subtrees, so O(1) time spent at node.

= All operations take O(log n) worst-case time.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 21 /38

2-4-trees

Consider the special case of b =4 (hence a = 2):

F
@ We analyze here the runtime in the RAM-model
(include cost of operations in internal memory)

F{ 13]14]16
0 0

0 0 0 0

e Height is O(log n), operations visit O(log n) nodes.
@ Each node stores O(1) keys and subtrees, so O(1) time spent at node.

= All operations take O(log n) worst-case time.

This is the same as AVL-trees in theory.
But we can make them even better in practice.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 21 /38

Towards red-black-trees

Problems with 2-4-trees:

F
@ Recall: We have three kinds of nodes (1-node, 2-node, 3-node)
so up to 7 items (keys and subtree-references) at a node.

F{ 13[14]16
0 0

0 0 [0

@ insert can change the number of keys and subtrees at a node.
@ How should we store key-subtree list?

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 22 /38

Towards red-black-trees

Problems with 2-4-trees:

F
@ Recall: We have three kinds of nodes (1-node, 2-node, 3-node)
so up to 7 items (keys and subtree-references) at a node.

F{ 13[14]16
0 0

0 0 [0

@ insert can change the number of keys and subtrees at a node.
@ How should we store key-subtree list?
» Array? Then we must use length 7. This wastes space.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 22 /38

Towards red-black-trees

Problems with 2-4-trees:

F
@ Recall: We have three kinds of nodes (1-node, 2-node, 3-node)
so up to 7 items (keys and subtree-references) at a node.

F{ 13[14]16
0 0

0 0 [0

@ insert can change the number of keys and subtrees at a node.
@ How should we store key-subtree list?

» Array? Then we must use length 7. This wastes space.
» Linked list? We have overhead for list-nodes. This wastes space.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 22 /38

Towards red-black-trees

Problems with 2-4-trees:

F
@ Recall: We have three kinds of nodes (1-node, 2-node, 3-node)
so up to 7 items (keys and subtree-references) at a node.

F{ 13[14]16
0 0

0 0 0 0

@ insert can change the number of keys and subtrees at a node.
@ How should we store key-subtree list?

» Array? Then we must use length 7. This wastes space.
» Linked list? We have overhead for list-nodes. This wastes space.

It does not matter for the theoretical bound, but matters in practice.

Better idea: Design a class of binary search trees that mirrors 2-4-trees!

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 22 /38

2-4-tree to red-black-tree

14

ol

0 [/}

Converting a 2-4-tree:

@ A d-node becomes a black node with d—1 red children

(Assembled so that they form a BST of height at most 1.)

M. Petrick, E. Schost (CS-UW)

CS240 — Module 11

Spring 2024

23 /38

2-4-tree to red-black-tree

Ei 13]14]15
|
0

0 [/}

Converting a 2-4-tree:

@ A d-node becomes a black node with d—1 red children
(Assembled so that they form a BST of height at most 1.)

Resulting properties:
@ Any red node has a black parent.

@ Any empty subtree T has the same black-depth
(number of black nodes on path from root to T)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 23 /38

Red-black-trees

Black depth: 2

Definition: A red-black tree is a binary search tree such that
@ every node has a color (red or black),
@ every red node has a black parent
(in particular the root is black),
@ any empty subtree T has the same black-depth
(number of black nodes on path from root to T)

Note: Can store this with only one bit overhead per node.
M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024

24 /38

Red-black tree to 2-4-tree
Rather than proving properties or describing operations directly, we
convert back to 2-4-trees.

Lemma: Any red-black tree T can be converted into a 2-4-tree T'.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 25 /38

Red-black tree to 2-4-tree

Rather than proving properties or describing operations directly, we
convert back to 2-4-trees.

Lemma: Any red-black tree T can be converted into a 2-4-tree T'.

22|25(27

Proof:

@ Black node with 0 < d < 2 red children becomes a (d+1)-node
@ This covers all nodes (no red node has a red child)

@ Empty subtrees on same level due to the same blackdepth

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 25 /38

Red-black tree summary

@ Red-black trees have height O(log n).

» Each level of the 2-4-tree creates at most 2 levels in the red-black tree.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 26 / 38

Red-black tree summary

@ Red-black trees have height O(log n).

» Each level of the 2-4-tree creates at most 2 levels in the red-black tree.

e insert can be done in O(log n) worst-case time.

» Convert relevant part to 2-4-tree.
» Do insertion in the 2-4-tree.
» Convert relevant parts back to red-black tree.

It can actually be done in the red-black tree directly, using only
rotations and recoloring (no details).

@ delete can also be done in O(log n) worst-case time (no details)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 26 / 38

Red-black tree summary

Red-black trees have height O(log n).

» Each level of the 2-4-tree creates at most 2 levels in the red-black tree.

e insert can be done in O(log n) worst-case time.

» Convert relevant part to 2-4-tree.
» Do insertion in the 2-4-tree.
» Convert relevant parts back to red-black tree.

It can actually be done in the red-black tree directly, using only
rotations and recoloring (no details).

@ delete can also be done in O(log n) worst-case time (no details)

@ Experiments show that red-black tree use fewer rotations than
AV L-trees.

@ This is a very popular balanced binary search tree (std: :map)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 26 / 38

B-trees
A B-tree is an a-b-tree tailored to the external memory model.
e Every node is one block of memory (of size B).

@ The order b is chosen maximally such that (b — 1)-node fits into a
block of memory. Typically b € ©(B).

@ ais set to be [b/2] as before.

/132IVI-\L58IVI°H\I:INULLI
T T

[e14]v][e]20][v]a]26]v][a]¢] [e]38]v]e[44]v][a[50[v]a[¢] [e[64][v]e[70[v[a] [[e[4]
L N A AN L L AN
[e] [e] o] [e] [*] [e] o] [e] (o] 0
110| 16| 122] 128 |34 40| 46 52| |60 66| 72
V] V] V] v [V V] V] V] V] V]
KX o] o] o] [KX KX o] [e] o] o]
112] 118] |124] 130] |36 142] 148| 62 68| [74]
V] V] V] AR]] V] V]]
o] o] o] o] [*] KX o] el [* o] o]
L L L I L L L L L
]]] []]]]]
T B S e B [e B @

(‘v" indicates the value or value-reference associated with the key next to it)
(arrows indicate references to the parent)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 27 / 38

B-tree Close-up

To see how to choose the order b, inspect a (b—1)-node:
@ Stoe b—1 keys and b—1 values
@ Store b references to subtrees

@ Store parent-reference

external memory

[mmmmmmmHmmmH(‘.mmmmmHmmmmmmmmmmmmmm.}

A transfer EN
if Ty
needed

internal memory

parent To 7 T, T3
o[efla[n]efie]ve]e|k]wsle]t]x]e[r]"]"]

unused (node not full)

AL e

In this example: B = 17 memory cells fit into one block, so we would
choose order b = 6.
M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 28 / 38

B-tree analysis

[e[14]v[e]20[v]a[26]v[a[¢] [e]38[v]e[44]v[e[50[v][a[¢] [e[64[v]e[70]v[e] [[e[4]
L N\ o A L L N
[e] o] o]] [o] [e] re] ¢] [[e] .
110| 16| 122] 128 |34 40| 46| 52| 160 66| 72
V] o v v [V] V] a V] V] v
o] K K o] [o] o] K o] [*] o] K
112] 18] 24] 130] |36 142] 48] 62| 68| [74]
V] v v v V] V] v V] V] vl
o] e K o] [e] o] K o] [*] o] e
L L L L] L L L L L
L L L I I L L L L L
T e [B B [Bl B [Es

@ search, insert, and delete each requires visiting ©(height) nodes
@ Work within a node is done in internal memory = no block-transfer.
@ The height is ©(log, n) = ©(logg n) (since a = [b/2] € O(B))

So all operations require ©(logg n) block transfers.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 29 / 38

B-tree summary

@ All operations require ©(logg n) block transfers.
» This is asymptotically optimal.
» Can show: Searching among n items requires Q(logg n) block
transfers.

@ In practice, height is a small constant.
» Say n=2%, and B =2%. So roughly b = 325, a = 1214,
» B-tree of height 4 would have > 2a* — 1 > 250 KVPs.
» So height is 3.

@ There are some variations that are even better in practice.

@ B-trees are hugely important for storing data bases (~ cs448)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 30/ 38

Outline

@ External Memory

@ External Hashing

M. Petrick, E. Schost (CS-UW) CS240 — Module 11

Dictionaries for Hash-values in External Memory

Recall Hashing:
@ Use hash-function to map keys to (small) integers.
e Expected run-time of operations is O(1) if load factor « is kept small
and hash-function is chosen randomly
This does not adapt well to external memory.
@ We must occasionally re-hash to keep load factor o small.
@ And re-hashing must load all n/B blocks.

@ This is unacceptably slow.

Goal: Data structure for hash-values that typically uses O(1) block
transfers, and never needs to load all blocks.

Idea: Keys ~» Hash-values = integers ~~ fixed-length bitstrings.
Store trie of bitstrings whose leaves are blocks of memory.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 31 /38

Trie of blocks — Overview

Internal

M. Petrick, E. Schost (CS-UW)

00101
00000

01000
01010

01111
01110
01111

10101
11010
10000

External
(B=3)

Assumption: We store fixed-length
bitstrings.

[These come from hash-values and
are not necessarily distinct.]

Build trie D (the directory) of bit-
strings in internal memory.

Stop splitting in D when remaining
items fit in one block.
(~ pruned trie, but stop earlier)

Each leaf of D refers to a block of
external memory.

The blocks store KVPs in no partic-
ular order.

CS240 — Module 11 Spring 2024 32 /38

Trie of blocks — operations

search(k):
! | 00101 @ Search for k in D until we
o A— =1 00000 reach leaf ¢
! @ Load block at ¢
! 0 ,e-. : .
Q <: :) 01000 @ Search for k in block
-, [01010/ 1 block transfer.
3
i
Y £l o111l
! “> 01110
............ v | o1111
..+ [10101
i) 11010
.| 10000
Internal External
(B=3)
M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024

33 /38

Trie of blocks — operations

bl 11010

Internal

M. Petrick, E. Schost (CS-UW)

e £ .

search(k):
00101 @ Search for k in D until we
00000 reach leaf /¢
@ Load block at ¢
01000 @ Search for k in block
01010| 1 block transfer.
o1111| delete(k):
> 01110
01111 e search(k) loads block
@ delete k from block
10101 o Transfer updated block back
10000 2 block transfers.
External Optional: combine underfull blocks.
(B=3) (This costs block-transfers, and nor-
mally is not worth the space-savings.
CS240 — Module 11 Spring 2024 33 /38

)

Trie of blocks — operations

00101
00000

01000
01010

01111
“> 01110
01111

- 10101
“j->{ 10010
10000

<

External
(B=73)

Internal

M. Petrick, E. Schost (CS-UW)

CS240 — Module 11

insert(k):

@ Search for k in D until we
reach leaf £
Load block P at ¢

If P is at capacity

> Leaf ¢ gets two new children
» Create two new blocks
> Split items in £ by next bit

@ Insert k into appropriate block.
@ Transfer updated block back
Typically 2 — 3 block transfers.

Spring 2024 34 /38

Trie of blocks — operations

00101
00000

01000
01010

01111
“> 01110
01111

- 10101
“j->{ 10010
10000

<

Internal External
(B=73)

insert(k):

@ Search for k in D until we
reach leaf £
Load block P at ¢

If P is at capacity

> Leaf ¢ gets two new children
» Create two new blocks
> Split items in £ by next bit

@ Insert k into appropriate block.
@ Transfer updated block back
Typically 2 — 3 block transfers.

If all items in P have the same next
bit, then split repeatedly.

For big B, this is (extremely) un-
likely.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 34 /38

Example 1: Insert

insert(01011)

00101
00000

01000
01010

01111
01110
01111

10101
10010
10000

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 35 /38

Example 1: Insert

insert(01011)

00101
00000

01000
01010
01011

01111
01110
01111

10101
10010
10000

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 35 /38

Example 1: Insert

insert(11010)

@ rereeenninisisasaninny : >} 00101
N .| 00000

00101 '
00000 . 0 e ,...,| 01000
01000 { . | 01010
000 . [oun
¢ > 01110
01111 Q A | o111

01110 :
o1 , ;[
10101 — * | 10000

10010 -
10000 =N 11010

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 35 /38

Example 2: Insert
insert(10110) (on original trie of blocks):

00101
00000

01000
01010

01111
01110
01111

10101
10010
10000

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 36 /38

Example 2: Insert

insert(10110) (on original trie of blocks): :
. :.) 00101
N .| ooooo
7 :
00101 S O _,e-.. | 01000
00000 °<i:Z:i | 01010
°. !
h}
01000 0 Lo . |0HH
01010 . 8,] 01110
N 1| o1111
ot
01111 =
01111 — i | 10000
10101 ‘ ¢
10010 e 18123
10000 :
ey

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 36 /38

External hashing collisions

@ Hashing collisions mean duplicate bitstrings, so all colliding items are
in the same block.

@ We do not care how collisions are resolved within the block.

@ But what if more than B items have the same hash-value?

» All bistrings in block are the same, so we cannot split
» This means either the load factor is too big or the hash-function is bad.
Either way, normally we would re-hash.

insert(10010) 10010
— | 10010

10010

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 37 /38

External hashing collisions

@ Hashing collisions mean duplicate bitstrings, so all colliding items are
in the same block.

@ We do not care how collisions are resolved within the block.

@ But what if more than B items have the same hash-value?

» All bistrings in block are the same, so we cannot split
» This means either the load factor is too big or the hash-function is bad.
Either way, normally we would re-hash.

insert(10010) | 10010 insert(100102010) | 10010-000
— > | 10010| becomes » [10010Z010
10010 10010_ 110

@ Here instead we extend the hash-function:
Replace h(k) by h(k)Z H'(k) for some new hash-function A'(-).

@ Initial bits are unchanged — other blocks unaffected.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 37 /38

External hashing summary

@ Only O(1) block transfers expected for any operation.

@ To make more space, we typically only add one block.
We rarely change the size of the directory.
We never have to move all items. (in contrast to re-hashing!)

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 38 /38

External hashing summary

@ Only O(1) block transfers expected for any operation.

@ To make more space, we typically only add one block.
We rarely change the size of the directory.
We never have to move all items. (in contrast to re-hashing!)

@ Directory D typically fits into in internal memory.
» If it does not, then strategies similar to B-trees can be applied.
» D can also be stored as an array, which typically makes it smaller (no
details).
@ Many blocks will not be full, but space usage is not too inefficient

» Can show: for randomly chosen bitstrings each block is expected to be
69% full.

M. Petrick, E. Schost (CS-UW) CS240 — Module 11 Spring 2024 38 /38

	External Memory
	Motivation
	Different levels of memory
	The External-Memory Model (EMM)

	Stream-based algorithms
	Streams and external memory

	External Dictionaries
	Dictionaries in external memory
	Idealized structure
	Towards a-b-trees
	a-b-trees
	a-b-tree Example
	a-b-tree Example
	a-b-tree Height
	a-b-tree Operations
	a-b-tree search
	a-b tree insert
	a-b-tree insert
	a-b-tree insert
	Towards 2-4-tree Deletion
	2-4-tree Deletion
	Deletion from a 2-4-tree
	a-b-tree Summary
	2-4-trees
	Towards red-black-trees
	2-4-tree to red-black-tree
	Red-black-trees
	Red-black tree to 2-4-tree
	Red-black tree summary
	B-trees
	B-tree Close-up
	B-tree analysis
	B-tree summary

	External Hashing
	Dictionaries for Hash-values in External Memory
	Trie of blocks – Overview
	Trie of blocks – operations
	Trie of blocks – operations
	Example 1: Insert
	Example 2: Insert
	External hashing collisions
	External hashing summary

