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Different levels of memory
Recall the RAM model of a computer: Any access to a memory location
takes the same (constant) time.

This is not at all realistic!

A typical current computer architecture includes
registers (very fast, very small)
cache L1, L2 (still fast, less small)
main memory
disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory
hierarchy into account, avoiding transfers as much as possible?

Define a new computer model that models one such ‘gap’ across which we
must transfer.
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The External-Memory Model (EMM)

CPU

random access (fast)

transfer in blocks of B cells (slow)

internal memory – size M

. . .
external memory – size unbounded. Store input (size n) here.

Assumption: During a transfer , we automatically load a whole block (or
“page”). This is quite realistic.
New objective: revisit all algorithms/data structures with the objective of
minimizing block transfers (“probes”, “disk transfers”, “page loads”)
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Streams and external memory
Stream-based algorithms (with O(1) resets) use Θ( n

B ) block transfers.

transfer when fulltransfer when empty

external
memory

internal memory
∗ ∗ ∗ ∗ ∗

↑
tail

↑
top work on

. . .∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
next block of input

∗∗∗∗∗
for next block of input

So can do the following with Θ( n
B ) block transfers:

Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch
Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore
(This assumes internal memory has O(|P|) space.)
Sorting: merge can be implemented with streams
⇝ merge-sort uses O( n

B log n) block transfers (can be improved)
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Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

Recall: AVL-trees were optimal in time and space in RAM model
Θ(log n) run-time ⇒ O(log n) block transfers per operation
But: Inserts happen at varying locations of the tree.
⇝ nearby nodes are unlikely to be on the same block
⇝ typically Θ(log n) block transfers per operation

We would like to have fewer block transfers.
▶ Goal: O(logB n) block transfers.
▶ Does this really make a difference?
▶ Consider ‘typical’ values: n ≈ 250, B ≈ 215.

What is log n vs. logB n?

Better solution: design a tree-structure that guarantees that many nodes
on search-paths are within one block.
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Idealized structure

Idea: Store complete subtrees with log b levels in one block of memory.
(b ∈ Θ(B) is maximal so that these fit into one block.)

Each block/subtree then covers height log b
⇒ Search-path hits log n

log b blocks ⇒ logb n block-transfers
Since b ∈ Θ(B), we have logb n ∈ Θ(logB n) (why?)

Idea: View the entire content of a block as one node.
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Towards a-b-trees

Define multiway-tree: A node can store multiple keys.

Definition: A d-node stores d keys, has d+1 subtrees, and stored keys
are between the keys in the subtrees.

• key k1 • key k2 • key k3 •

keys <k1 k1< keys <k2 k2< keys <k3 k3< keys

We always have one more subtree than keys (but subtrees may be empty).

To allow insert/delete, we permit a varying numbers of keys in nodes
(within limits)
We also rigidly restrict where empty subtrees may be.
This gives much smaller height than for AVL-trees
⇒ fewer block transfers
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a-b-trees
Definition: An a-b-tree (for some b ≥ 3 and 2 ≤ a ≤ ⌈b

2⌉) satisfies
1 Every non-root is a d-node for some a−1 ≤ d ≤ b−1.

▶ Between a and b subtrees, between a−1 and b−1 keys.
2 The root is a d-node for 1 ≤ d ≤ b−1.

▶ Between 2 and b subtrees, between 1 and b−1 keys.
3 All empty subtrees are at the same level.

Example: A 2-4-tree of height 1.

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

For 2-4-trees, every node has between 1 and 3 keys.
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a-b-tree Example

Example: A 3-5-tree of height 2.

33

14 20 26

10 12

∅ ∅ ∅

16 18

∅ ∅ ∅

22 24

∅ ∅ ∅

28 30 32

∅ ∅ ∅ ∅

38 44 50 56

34 36

∅ ∅ ∅

40 42

∅ ∅ ∅

46 48

∅ ∅ ∅

52 54

∅ ∅ ∅

58 60

∅ ∅ ∅

Typically we will specify the order b and then set a = ⌈b
2⌉.
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a-b-tree Example

Example: A 3-6-tree of height 2.

38

14 20 26 32

10 12

∅ ∅ ∅

16 18

∅ ∅ ∅

22 24

∅ ∅ ∅

28 30

∅ ∅ ∅

34 36

∅ ∅ ∅

44 50 62

40 42

∅ ∅ ∅

46 48

∅ ∅ ∅

52 54 56 58 60

∅ ∅ ∅ ∅ ∅ ∅

64 66

∅ ∅ ∅

Note: With small height we can store many keys.
A 3-6-tree of height 2 can store up to (1 + 6 + 36) · 5 = 215 keys.
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a-b-tree Height
Theorem: An a-b-tree with n keys has O(loga(n)) height.
Proof: How many keys must an a-b-tree of height h have?

Level Nodes
1 ≥ 2
2 ≥ 2a
3 ≥ 2a2
...

...
h ≥ 2ah−1

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅ ∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

Here a = 3

# non-root nodes ≥
h∑

i=1
2ai−1 = 2

h−1∑
j=0

aj = 2ah − 1
a − 1

n = # KVPs ≥ 1︸︷︷︸
root

+ (a − 1)︸ ︷︷ ︸
≥a−1 KVPs at non-root

2ah − 1
a − 1 = 2ah − 1

Therefore h ≤ loga
(n+1

2
)
.

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 11 / 38



a-b-tree Height
Theorem: An a-b-tree with n keys has O(loga(n)) height.
Proof: How many keys must an a-b-tree of height h have?

Level Nodes
1 ≥ 2
2 ≥ 2a
3 ≥ 2a2
...

...
h ≥ 2ah−1

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅ ∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

Here a = 3

# non-root nodes ≥
h∑

i=1
2ai−1 = 2

h−1∑
j=0

aj = 2ah − 1
a − 1

n = # KVPs ≥ 1︸︷︷︸
root

+ (a − 1)︸ ︷︷ ︸
≥a−1 KVPs at non-root

2ah − 1
a − 1 = 2ah − 1

Therefore h ≤ loga
(n+1

2
)
.

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 11 / 38



a-b-tree Height
Theorem: An a-b-tree with n keys has O(loga(n)) height.
Proof: How many keys must an a-b-tree of height h have?

Level Nodes
1 ≥ 2
2 ≥ 2a
3 ≥ 2a2
...

...
h ≥ 2ah−1

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅ ∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

Here a = 3

# non-root nodes ≥
h∑

i=1
2ai−1 = 2

h−1∑
j=0

aj = 2ah − 1
a − 1

n = # KVPs ≥ 1︸︷︷︸
root

+ (a − 1)︸ ︷︷ ︸
≥a−1 KVPs at non-root

2ah − 1
a − 1 = 2ah − 1

Therefore h ≤ loga
(n+1

2
)
.

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 11 / 38



a-b-tree Height
Theorem: An a-b-tree with n keys has O(loga(n)) height.
Proof: How many keys must an a-b-tree of height h have?

Level Nodes
1 ≥ 2
2 ≥ 2a
3 ≥ 2a2
...

...
h ≥ 2ah−1

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅ ∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

Here a = 3

# non-root nodes ≥
h∑

i=1
2ai−1 = 2

h−1∑
j=0

aj = 2ah − 1
a − 1

n = # KVPs ≥ 1︸︷︷︸
root

+ (a − 1)︸ ︷︷ ︸
≥a−1 KVPs at non-root

2ah − 1
a − 1 = 2ah − 1

Therefore h ≤ loga
(n+1

2
)
.

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 11 / 38



a-b-tree Operations
Search is similar to BST:

Compare search-key to keys at node
If not found, continue in appropriate subtree until empty

Example: search(15)

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 12 / 38



a-b-tree Operations
Search is similar to BST:

Compare search-key to keys at node
If not found, continue in appropriate subtree until empty

Example: search(15)

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 12 / 38



a-b-tree Operations
Search is similar to BST:

Compare search-key to keys at node
If not found, continue in appropriate subtree until empty

Example: search(15) not found

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅
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a-b-tree search

abTree::search(k)
1. z ← root, p ← NULL // p: parent of z
2. while z is not NULL
3. let ⟨T0, k1, . . . , kd , Td⟩ be key-subtree list at z
4. if k ≥ k1
5. i ← maximal index such that ki ≤ k
6. if ki = k then return KVP at ki
7. else p ← z , z ← root of Ti
8. else p ← z , z ← root of T0
9. return “not found, would be in p”

# visited nodes: O(loga n) (one per level)
Note: Finding i is not constant time (depending on b)
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a-b tree insert
Do abTree::search and add key and empty subtree at leaf.

If the leaf had room then we are done.
Else overflow: More keys/subtrees than permitted.
Resolve overflow by node splitting.

Example (2-4-tree): insert(10)

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅
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a-b tree insert
Do abTree::search and add key and empty subtree at leaf.
If the leaf had room then we are done.
Else overflow: More keys/subtrees than permitted.
Resolve overflow by node splitting.

Example (2-4-tree): insert(17)

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

10 11

∅ ∅ ∅

13 14 16 17

∅ ∅ ∅ ∅ ∅

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 14 / 38



a-b tree insert
Do abTree::search and add key and empty subtree at leaf.
If the leaf had room then we are done.
Else overflow: More keys/subtrees than permitted.
Resolve overflow by node splitting.

Example (2-4-tree): insert(17)

5 9 12 16

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

10 11

∅ ∅ ∅

13 14

∅ ∅ ∅

17

∅ ∅

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 14 / 38



a-b tree insert
Do abTree::search and add key and empty subtree at leaf.
If the leaf had room then we are done.
Else overflow: More keys/subtrees than permitted.
Resolve overflow by node splitting.

Example (2-4-tree): insert(17)

5 9 12 16

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

10 11

∅ ∅ ∅

13 14

∅ ∅ ∅

17

∅ ∅

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 14 / 38



a-b tree insert
Do abTree::search and add key and empty subtree at leaf.
If the leaf had room then we are done.
Else overflow: More keys/subtrees than permitted.
Resolve overflow by node splitting.

Example (2-4-tree): insert(17)

12

5 9

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

10 11

∅ ∅ ∅

16

13 14

∅ ∅ ∅

17

∅ ∅
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a-b-tree insert

abTree::insert(k)
1. z ← abTree::search(k) // z: leaf where k should be
2. Add k and an empty subtree in key-subtree-list of z
3. while z has b keys (overflow ⇝ node split)
4. Let ⟨T0, k1, . . . , kb, Tb⟩ be key-subtree list at v
5. if (z has no parent) create a parent of z without KVPs
6. move upper median km of keys to parent p of z
7. z ′ ← new node with ⟨T0, k1, . . . , km−1, Tm−1⟩
8. z ′′ ← new node with ⟨Tm, km+1, . . . , kb, Tb⟩
9. Replace ⟨z⟩ by ⟨z ′, km, z ′′⟩ in key-subtree-list of p
10. z ← p

k ′ k ′′

k1 k2 k3 k4

T0 T1 T2 T3 T4

p

z −→
k ′ k3 k ′′

k1 k2

T0 T1 T2

k4

T3 T4

p

z ′ z ′′
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a-b-tree insert
Example: insert(55) in a 3-6-tree:

38

14 20 26 32

10 12

∅ ∅ ∅

16 18

∅ ∅ ∅

22 24

∅ ∅ ∅

28 30

∅ ∅ ∅

34 36

∅ ∅ ∅

44 50 62

40 42

∅ ∅ ∅

46 48

∅ ∅ ∅

52 54 55 56 58 60

∅ ∅ ∅ ∅ ∅ ∅ ∅

64 66

∅ ∅ ∅

Node split ⇒ new nodes have ≥ ⌊(b−1)/2⌋ = ⌈b/2⌉ − 1 keys
Since we know a ≤ ⌈b/2⌉, this is ≥ a−1 keys as required.
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Towards 2-4-tree Deletion

For deletion, we symmetrically will have to handle underflow
(too few keys/subtrees)
Crucial ingredient for this: immediate sibling

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

Observe: Any node except the root has an immediate sibling.
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2-4-tree Deletion
Example: delete(43)

abTree::search, then trade with successor if KVP is not at a leaf.

If underflow:

▶ If immediate sibling has extras, rotate/transfer
▶ Else node merge (this affects the parent!)

36

25

18 21

12 19 24

31

28 33

43

41

39 42

51

48 56 62
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2-4-tree Deletion
Example: delete(19)

abTree::search, then trade with successor if KVP is not at a leaf.
If underflow:

▶ If immediate sibling has extras, rotate/transfer

▶ Else node merge (this affects the parent!)
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2-4-tree Deletion
Example: delete(42)

abTree::search, then trade with successor if KVP is not at a leaf.
If underflow:

▶ If immediate sibling has extras, rotate/transfer
▶ Else node merge (this affects the parent!)
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Deletion from a 2-4-tree

24Tree::delete(k)
1. v ← 24Tree::search(k) // node containing k
2. if v is not leaf
3. swap k with its successor k ′ and v with leaf containing k ′

4. delete k and one empty subtree in v
5. while v has 0 keys (underflow)
6. if parent p of v is NULL, delete v and break
7. if v has immediate sibling u with 2 or more keys (transfer/rotate)
8. transfer the key of u that is nearest to v to p
9. transfer the key of p between u and v to v
10. transfer the subtree of u that is nearest to v to v
11. break
12. else (merge & repeat)
13. u ← immediate sibling of v
14. transfer the key of p between u and v to u
15. transfer the subtree of v to u
16. delete node v and set v ← p
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a-b-tree Summary

An a-b tree has height O(loga n)
If a ≈ b/2, then this height-bound is tight.

▶ Level i contains at most bi nodes
▶ Each node contains at most b − 1 KVPs
▶ So n ≤ bh+1 − 1 and h ∈ Ω(logb n).

search and insert visit O(loga n) nodes.
delete can also be implemented with O(loga n) node-visits.
But usually use lazy deletion—space is cheap in external memory.

How do we choose the order b? (Recall: a is usually ⌈b
2⌉.)

▶ Option 1: b small, e.g. b = 4
⇝ a new balanced BST, competetive with AVL-trees.

▶ Option 2: b big (but one node still fits into one block of memory)
⇝ a realization of ADT Dictionary for external memory
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2-4-trees
Consider the special case of b = 4 (hence a = 2):

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

We analyze here the runtime in the RAM-model
(include cost of operations in internal memory)
Height is O(log n), operations visit O(log n) nodes.
Each node stores O(1) keys and subtrees, so O(1) time spent at node.

⇒ All operations take O(log n) worst-case time.

This is the same as AVL-trees in theory.
But we can make them even better in practice.
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Towards red-black-trees
Problems with 2-4-trees:

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

Recall: We have three kinds of nodes (1-node, 2-node, 3-node)
so up to 7 items (keys and subtree-references) at a node.
insert can change the number of keys and subtrees at a node.
How should we store key-subtree list?

▶ Array? Then we must use length 7. This wastes space.
▶ Linked list? We have overhead for list-nodes. This wastes space.

It does not matter for the theoretical bound, but matters in practice.

Better idea: Design a class of binary search trees that mirrors 2-4-trees!
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2-4-tree to red-black-tree

5 12

3 4
∅ ∅ ∅

11
∅ ∅

13 14 15
∅ ∅ ∅ ∅

→

12
5

4
3

∅ ∅

∅

11
∅ ∅

14
13

∅ ∅

15
∅ ∅

Converting a 2-4-tree:
A d-node becomes a black node with d−1 red children
(Assembled so that they form a BST of height at most 1.)

Resulting properties:
Any red node has a black parent.
Any empty subtree T has the same black-depth
(number of black nodes on path from root to T )
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Red-black-trees

12

5

4

3

∅ ∅

∅

11

∅ ∅

14

13

∅ ∅

15

∅ ∅

Black depth: 2

Definition: A red-black tree is a binary search tree such that
every node has a color (red or black),
every red node has a black parent
(in particular the root is black),
any empty subtree T has the same black-depth
(number of black nodes on path from root to T )

Note: Can store this with only one bit overhead per node.
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Red-black tree to 2-4-tree
Rather than proving properties or describing operations directly, we
convert back to 2-4-trees.

Lemma: Any red-black tree T can be converted into a 2-4-tree T ′.

13

8

1

∅ ∅

11

9

∅ ∅

∅

25

22

∅ ∅

27

∅ ∅

→

8 13

1
∅ ∅

9 11
∅ ∅ ∅

22 25 27
∅ ∅ ∅ ∅

Proof:
Black node with 0 ≤ d ≤ 2 red children becomes a (d+1)-node
This covers all nodes (no red node has a red child)
Empty subtrees on same level due to the same blackdepth
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Red-black tree summary

Red-black trees have height O(log n).
▶ Each level of the 2-4-tree creates at most 2 levels in the red-black tree.

insert can be done in O(log n) worst-case time.
▶ Convert relevant part to 2-4-tree.
▶ Do insertion in the 2-4-tree.
▶ Convert relevant parts back to red-black tree.

It can actually be done in the red-black tree directly, using only
rotations and recoloring (no details).
delete can also be done in O(log n) worst-case time (no details)

Experiments show that red-black tree use fewer rotations than
AVL-trees.
This is a very popular balanced binary search tree (std::map)
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B-trees
A B-tree is an a-b-tree tailored to the external memory model.

Every node is one block of memory (of size B).
The order b is chosen maximally such that (b − 1)-node fits into a
block of memory. Typically b ∈ Θ(B).
a is set to be ⌈b/2⌉ as before.

• 32 v • 58 v • • NULL

• 14 v • 20 v • 26 v • •

x
•
10
v
•
12
v
•

•
•

↰

•
16
v
•
18
v
•

•
•

↰

•
22
v
•
24
v
•

•
•

↰

•
28
v
•
30
v
•

•
•

↰

• 38 v • 44 v • 50 v • •

x
•
34
v
•
36
v
•

•
•

↰

•
40
v
•
42
v
•

•
•

↰

•
46
v
•
48
v
•

•
•

↰
•
52
v
•
54
v
•
56
v
•
•

↰
• 64 v • 70 v • • •

x
•
60
v
•
62
v
•

•
•

↰

•
66
v
•
68
v
•

•
•

↰

•
72
v
•
74
v
•

•
•

↰

(‘v’ indicates the value or value-reference associated with the key next to it)
(arrows indicate references to the parent)
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B-tree Close-up
To see how to choose the order b, inspect a (b−1)-node:

Stoe b−1 keys and b−1 values
Store b references to subtrees
Store parent-reference

transfer
if T1
needed internal memory

external memory
. . .

• • • • • • •
parent T0

k1 v1

T1

k2 v2

T2

k3 v3

T3

k4 v4

T4

k5 v5

T5

unused (node not full)

In this example: B = 17 memory cells fit into one block, so we would
choose order b = 6.
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B-tree analysis

• 32 v • 58 v • • NULL

• 14 v • 20 v • 26 v • •

x
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10
v
•
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v
•

•
•

↰
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16
v
•
18
v
•

•
•

↰

•
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v
•
24
v
•

•
•

↰

•
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v
•
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v
•

•
•

↰

• 38 v • 44 v • 50 v • •

x
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v
•
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v
•
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↰

•
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v
•
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v
•

•
•

↰

•
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v
•
48
v
•

•
•

↰

•
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v
•
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v
•
56
v
•
•

↰

• 64 v • 70 v • • •

x
•
60
v
•
62
v
•

•
•

↰

•
66
v
•
68
v
•

•
•

↰
•
72
v
•
74
v
•

•
•

↰

search, insert, and delete each requires visiting Θ(height) nodes
Work within a node is done in internal memory ⇒ no block-transfer.
The height is Θ

(
loga n

)
= Θ

(
logB n

)
(since a = ⌈b/2⌉ ∈ Θ(B))

So all operations require Θ(logB n) block transfers.

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 29 / 38



B-tree summary

All operations require Θ(logB n) block transfers.
▶ This is asymptotically optimal.
▶ Can show: Searching among n items requires Ω(logB n) block

transfers.

In practice, height is a small constant.
▶ Say n = 250, and B = 215. So roughly b = 1

3 215, a = 1
3 214.

▶ B-tree of height 4 would have ≥ 2a4 − 1 > 250 KVPs.
▶ So height is 3.

There are some variations that are even better in practice.

B-trees are hugely important for storing data bases (⇝ cs448)
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Outline

11 External Memory
Motivation
Stream-based algorithms
External Dictionaries

a-b-trees
2-4-trees and Red-Black Trees
B-trees

External Hashing
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Dictionaries for Hash-values in External Memory
Recall Hashing:

Use hash-function to map keys to (small) integers.
Expected run-time of operations is O(1) if load factor α is kept small
and hash-function is chosen randomly

This does not adapt well to external memory.
We must occasionally re-hash to keep load factor α small.
And re-hashing must load all n/B blocks.
This is unacceptably slow.

Goal: Data structure for hash-values that typically uses O(1) block
transfers, and never needs to load all blocks.

Idea: Keys ⇝ Hash-values = integers ⇝ fixed-length bitstrings.
Store trie of bitstrings whose leaves are blocks of memory.
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Trie of blocks – Overview

0

0
1

1

0

1

00101
00000

01000
01010

01111
01110
01111

10101
11010
10000

Internal External
(B = 3)

Assumption: We store fixed-length
bitstrings.
[These come from hash-values and
are not necessarily distinct.]

Build trie D (the directory) of bit-
strings in internal memory.

Stop splitting in D when remaining
items fit in one block.
(∼ pruned trie, but stop earlier)

Each leaf of D refers to a block of
external memory.

The blocks store KVPs in no partic-
ular order.
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Trie of blocks – operations

0

0
1

1

0

1

00101
00000

01000
01010

01111
01110
01111

10101
11010
10000

Internal External
(B = 3)

search(k):
Search for k in D until we
reach leaf ℓ

Load block at ℓ

Search for k in block
1 block transfer.

delete(k):
search(k) loads block
delete k from block
Transfer updated block back

2 block transfers.( Optional: combine underfull blocks.
This costs block-transfers, and nor-
mally is not worth the space-savings.

)
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Trie of blocks – operations

0

0
1

1

0

1

00101
00000

01000
01010

01111
01110
01111

10101
10010
10000

Internal External
(B = 3)

insert(k):
Search for k in D until we
reach leaf ℓ

Load block P at ℓ

If P is at capacity
▶ Leaf ℓ gets two new children
▶ Create two new blocks
▶ Split items in ℓ by next bit

Insert k into appropriate block.
Transfer updated block back

Typically 2− 3 block transfers.

If all items in P have the same next
bit, then split repeatedly.

For big B, this is (extremely) un-
likely.
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bit, then split repeatedly.

For big B, this is (extremely) un-
likely.
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Example 1: Insert

insert(01011)
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Example 1: Insert

insert(11010)
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Example 2: Insert
insert(10110) (on original trie of blocks):

0

0
1

1

0

1

00101
00000

01000
01010

01111
01110
01111

10101
10010
10000

0

0
1

1

0

0
1

0

1
1

00101
00000

01000
01010

01111
01110
01111

10010
10000

10101
10110

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 36 / 38



Example 2: Insert
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External hashing collisions

Hashing collisions mean duplicate bitstrings, so all colliding items are
in the same block.
We do not care how collisions are resolved within the block.
But what if more than B items have the same hash-value?

▶ All bistrings in block are the same, so we cannot split
▶ This means either the load factor is too big or the hash-function is bad.

Either way, normally we would re-hash.
10010
10010
10010

insert(10010)

becomes
10010 000
10010 010
10010 110

insert(10010 010)

Here instead we extend the hash-function:
Replace h(k) by h(k) h′(k) for some new hash-function h′(·).
Initial bits are unchanged → other blocks unaffected.
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External hashing summary

Only O(1) block transfers expected for any operation.
To make more space, we typically only add one block.
We rarely change the size of the directory.
We never have to move all items. (in contrast to re-hashing!)

Directory D typically fits into in internal memory.
▶ If it does not, then strategies similar to B-trees can be applied.
▶ D can also be stored as an array, which typically makes it smaller (no

details).
Many blocks will not be full, but space usage is not too inefficient

▶ Can show: for randomly chosen bitstrings each block is expected to be
69% full.

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 38 / 38



External hashing summary

Only O(1) block transfers expected for any operation.
To make more space, we typically only add one block.
We rarely change the size of the directory.
We never have to move all items. (in contrast to re-hashing!)

Directory D typically fits into in internal memory.
▶ If it does not, then strategies similar to B-trees can be applied.
▶ D can also be stored as an array, which typically makes it smaller (no

details).
Many blocks will not be full, but space usage is not too inefficient

▶ Can show: for randomly chosen bitstrings each block is expected to be
69% full.

M. Petrick, É. Schost (CS-UW) CS240 – Module 11 Spring 2024 38 / 38


	External Memory
	Motivation
	Different levels of memory
	The External-Memory Model (EMM)

	Stream-based algorithms
	Streams and external memory

	External Dictionaries
	Dictionaries in external memory
	Idealized structure
	Towards a-b-trees
	a-b-trees
	a-b-tree Example
	a-b-tree Example
	a-b-tree Height
	a-b-tree Operations
	a-b-tree search
	a-b tree insert
	a-b-tree insert
	a-b-tree insert
	Towards 2-4-tree Deletion
	2-4-tree Deletion
	Deletion from a 2-4-tree
	a-b-tree Summary
	2-4-trees
	Towards red-black-trees
	2-4-tree to red-black-tree
	Red-black-trees
	Red-black tree to 2-4-tree
	Red-black tree summary
	B-trees
	B-tree Close-up
	B-tree analysis
	B-tree summary

	External Hashing
	Dictionaries for Hash-values in External Memory
	Trie of blocks – Overview
	Trie of blocks – operations
	Trie of blocks – operations
	Example 1: Insert
	Example 2: Insert
	External hashing collisions
	External hashing summary



