CS 240 - Data Structures and Data Management

Module 9: String Matching

Mark Petrick, Éric Schost Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2024

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Pattern Matching Introduction

- Search for a string (pattern) in a large body of text. Useful for
 - ▶ Information Retrieval (text editors, search engines)
 - Bioinformatics
 - ► Data Mining
- T[0..n-1] The text (or haystack) being searched within Example: T = "Where is he?"
- P[0..m-1] The pattern (or needle) being searched for

Example:
$$P_1 =$$
 "he" $P_2 =$ "who"

• occurrence: index i such that T[i...i+m-1] = P, i.e.,

$$P[j] = T[i+j]$$
 for $0 \le j \le m-1$

- Convention: return smallest such *i* (leftmost occurrence)
- If P does not occur in T, return FAIL

Pattern Matching Observation

Recall:

- Substring T[i..j] for $0 \le i \le j+1 \le n$: a string of length j-i+1 which consists of characters $T[i], \ldots T[j]$ in order.
- **Prefix** of T: a substring T[0..i-1] of T for some $0 \le i \le n$.
- **Suffix** of T: a substring T[i..n-1] of T for some $0 \le i \le n$.
- ullet The **empty string** Λ is also considered a substring, prefix and suffix.

Observe: P occurs in T

- \Leftrightarrow *P* is a substring of *T*.
- \Leftrightarrow P is a suffix of some prefix of T.
- \Leftrightarrow P is a prefix of some suffix of T.

General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:

- A guess is a position g such that P might start at T[i]. Valid guesses (initially) are $0 \le g \le n m$.
- A **check** of a guess is a single position j with $0 \le j < m$ where we compare T[g+j] to P[j].
- We do strncmp to compare a guess to P. This uses m checks in the worst-case, but may use (many) fewer checks if there is a mismatch.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess (shaded gray).

a	b	b	b	a	b	a	b	b	a	b
а	b	b	a							
	а									

Brute-force Algorithm

Idea: Check every possible guess.

```
Bruteforce::pattern-matching(T[0..n-1], P[0..m-1])
T: String of length n (text), P: String of length m (pattern)

1. for g \leftarrow 0 to n-m do // g: index of guess

2. if strncmp(T, P, g, m) = 0

3. return "found at guess g"

4. return FAIL
```

Note: strncmp takes $\Theta(m)$ time.

Brute-Force Example

• Example: T = abbbababbab, P = abba

a	b	b	b	a	b	a	b	b	a	b
а	b	b	а							
	a									
		a								
			а							
				а	b	b				
					а					
						а	b	b	а	

• What is the worst possible input?

Brute-Force Example

• Example: T = abbbababbab, P = abba

a	b	b	b	a	b	a	b	b	a	b
а	b	b	a							
	а									
		a								
			a							
				а	b	b				
					а					
						а	b	b	а	

- What is the worst possible input? $P = a^{m-1}b$, $T = a^n$
- Worst case performance $\Theta((n-m+1)\cdot m)$
- This is too slow (quadratic if $m \approx n/2$).

How to improve?

General idea of **preprocessing**: Do work on some parts of input beforehand, so that the actual **query** (with rest of input) then goes faster.

For pattern matching, we have two options:

- Do preprocessing on the pattern P
 - ▶ We eliminate guesses based on characters we have seen.
- Do preprocessing on the text T
 - We create a data structure to find matches easily.

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Karp-Rabin Fingerprint Algorithm – Idea

Idea: Use **fingerprints** to eliminate guesses

- Need function h: {strings of length m} \to {0,..., M-1} (Call these 'hash-function' and 'table-size', but there is no dictionary here)
- Insight: If $h(P) \neq h(T[g..g+m-1])$ then guess g cannot work

Example:
$$\Sigma = \{0-9\}$$
, $P = 9\ 2\ 6\ 5\ 3$, $T = 3\ 1\ 4\ 1\ 5\ 9\ 2\ 6\ 5\ 3\ 5$

• Use standard hash-function for words, with $R = |\Sigma|$ and M = 97:

$$h(x_0...x_4) = (x_0x_1x_2x_3x_4)_{10} \mod 97$$

• Pre-compute $h(P) = 92653 \mod 97 = 18$.

3	1	4	1	5	9	2	6	5	3	5
f	inge	erpri	nt 8	4						
	1	inge	erpri	nt 9	4					
		f	inge	erpri	nt 7	6				
			f	inge	erpri	nt 1	8			
				fingerprint 95						
				fingerprint 18						

no strncmp needed no strncmp needed no strncmp needed do strncmp, false positive no strncmp needed do strncmp, found

Spring 2024

Karp-Rabin Fingerprint Algorithm - First Attempt

```
Karp-Rabin-Simple::pattern-matching(T, P)

1. h_P \leftarrow h(P[0..m-1)])

2. for g \leftarrow 0 to n-m

3. h_T \leftarrow h(T[g..g+m-1]) // not constant time

4. if h_T = h_P

5. if strncmp(T, P, g, m) = 0

6. return "found at guess g"

7. return FAIL
```

- Never misses a match: $h(T[g..g+m-1]) \neq h(P) \Rightarrow \text{guess } g \text{ is not } P$
- h(T[g..g+m-1]) depends on m characters, so naive computation takes $\Theta(m)$ time per guess
- Running time is $\Theta(mn)$ if P is not in T. Can we improve this?

Karp-Rabin Fingerprint Algorithm – Fast Update

Idea: Consecutive guesses share m-1 characters

 \Rightarrow for suitable hash-functions, can compute next fingerprint from previous

Example:
$$15926 = (41592 - 4 \cdot 10000) \cdot 10 + 6$$

$$\underbrace{\frac{15926 \mod 97}{h(15926)}} = \left(\underbrace{\frac{41592 \mod 97}{\text{previous fingerprint}}}_{\text{previous fingerprint}} - 4 \cdot \underbrace{\frac{10000 \mod 97}{9 \text{ (pre-computed)}}}_{9 \text{ (pre-computed)}} \right) \cdot 10 + 6) \mod 97$$

$$= \left((76 - 4 \cdot 9) \cdot 10 + 6 \right) \mod 97 = 18$$

- So pre-compute $R^{m-1} \mod M$ (here 10000 mod 97 = 9)
- Compute leftmost fingerprint
- Use previous fingerprint to compute next fingerprint in O(1) time
- Run-time: $O(m + n + m \cdot \#\{\text{false positives}\})$

Karp-Rabin Fingerprint Algorithm - Conclusion

```
Karp-Rabin::pattern-matching(T,P) // rolling hash-function
1. M \leftarrow suitable prime number
2. h_P \leftarrow h(P[0..m-1)])
3. s \leftarrow R^{m-1} \mod M
4. h_T \leftarrow h(T[0..m-1)])
5. for g \leftarrow 0 to n - m
6. if h_T = h_P
              if strncmp(T, P, g, m) = 0 return "found at guess g"
8. if g < n - m // compute fingerprint for next guess
              h_T \leftarrow ((h_T - T[g] \cdot s) \cdot R + T[g+m]) \mod M
9
10. return "FAIL"
```

- Choose "table size" M to be random prime in $\{2, ..., mn^2\}$
- Can show: Then $P(\text{at least one false positive}) \in O(\frac{1}{n})$
- Expected time O(m+n), worst-luck time $O(m \cdot n)$ (extremely unlikely)
- Improvement: reset M after a false positive

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

String Matching with Finite Automata

Example: Automaton for the pattern P = ababaca

You should be familiar with:

- \bullet finite automaton, DFA, NFA, converting NFA to DFA
- transition function, states, start state, accepting states

String Matching with Finite Automata

Example: Automaton for the pattern P = ababaca

You should be familiar with:

- finite automaton, DFA, NFA, converting NFA to DFA
 transition function, states, start state, accepting states
- This is a Non-deterministic Finite Automaton
- Forward-arc $(j) \longrightarrow (j+1)$ labelled with P[j]
- State *j* expresses "we have *j* leftmost characters of *P*"
- NFA accepts T if and only if T contains P

String Matching with Finite Automata

Example: Automaton for the pattern P = ababaca

You should be familiar with:

- finite automaton, DFA, NFA, converting NFA to DFA
- transition function, states, start state, accepting states
- This is a Non-deterministic Finite Automaton
- Forward-arc $(j) \longrightarrow (j+1)$ labelled with P[j]
- ullet State j expresses "we have j leftmost characters of P"
- NFA accepts T if and only if T contains P

But evaluating NFAs is very slow.

String matching with DFA

Can show: There exists an equivalent **D**eterministic **F**inite **A**utomaton:

- Same states, forward-arcs, start state, accepting states.
- Easy to test whether *P* is in *T*.
- But how do we find the backward-arcs?

(We will not give the details of this since there is an even better automaton.)

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Knuth-Morris-Pratt Motivation

- Same states, forward-arcs, start state, accepting states.
- Use a new type of transition \times ("failure") but stay deterministic:
 - ▶ One per state 1, ..., m-1, use it only if no other transition fits.
 - Does not consume a character.

Knuth-Morris-Pratt Motivation

- Same states, forward-arcs, start state, accepting states.
- Use a new type of transition \times ("failure") but stay deterministic:
 - ▶ One per state 1, ..., m-1, use it only if no other transition fits.
 - Does not consume a character.
- We will (later) determine failure-arcs such that the automaton accepts T if and only if T contains ababaca
- Store the failure-arcs in an array F[0..m-1] (index off by one!):

j	0	1	2	3	4	5	6
failure arc from (j) to	NA	0	0	1	2	3	0
<i>F</i> [<i>j</i>]	0	0	1	2	3	0	?

Knuth-Morris-Pratt Algorithm

There is no need to build an automaton; 'parsing' can be described with variables and failure-array F.

```
KMP::pattern-matching(T, P)
1. F \leftarrow compute-failure-array(P)
2. i \leftarrow 0
               // character of T to parse
3. i \leftarrow 0
                           // current state
4. while i < n do
5. // inv: P[0..j-1] is a suffix of T[0..i-1]
        if P[i] = T[i]
             if j = m - 1 then return "found at guess i - m + 1"
7.
             else
                                                  // forward-arc
8.
9.
                  i \leftarrow i + 1
10.
                 i \leftarrow i + 1
11. else // next character is mismatch
12.
             if j > 0 then j \leftarrow F[j-1]
                                          // failure-arc
             else i \leftarrow i + 1
13.
                                                  // loop at 0
14. return FAIL
```

String matching with KMP – Example

Example: T = ababababaca, P = ababaca

b b a b b С b b а а а а a b b a a a (a) (a) (b) b X (a) (b) X X × a b a b a a

state: 1 2 3 4 5 3,42,0 0 1 2 3 4 5 6 7

(after reading this character)

String matching with KMP – Failure-function

Assume that we reach a mismatch (say at guess g):

- Consider guesses at index $g+1, g+2, \ldots$ Could they match?
- The matched characters will rule out many of these guesses.
- We want the leftmost guess that cannot be ruled out.
- Note: This depends only on P, and not on T.
 In particular it can be pre-computed.

String matching with KMP - Failure-function

• Consider again the example P = ababaca.

String matching with KMP - Failure-function

• Consider again the example P = ababaca.

• Sometimes nothing fits. Then shift past matched part.

P (shifted):

аb

a

• Store in $F[\cdot]$ how many characters are matched in new shift.

а

String matching with KMP - Failure function

- **Definition:** F[j] = number of re-used characters if P[0..j] matched

(This matches exactly the failure-arcs in KMP-automaton.)

String matching with KMP - Failure function

- **Definition:** F[j] = number of re-used characters if P[0..j] matched

(This matches exactly the failure-arcs in KMP-automaton.)

• In general: We must find a long prefix of P that is a suffix of P[0..j] (except it should not be **all** of P[0..j])

ullet Equivalently: We must find a long prefix of P that is a suffix of P[1..j]

String matching with KMP - Failure function

- **Definition:** F[j] = number of re-used characters if P[0..j] matched

• In general: We must find a long prefix of P that is a suffix of P[0..j] (except it should not be **all** of P[0..j])

ullet Equivalently: We must find a long prefix of P that is a suffix of P[1..j]

Result: F[j] = length of the longest prefix of P that is a suffix of P[1..j].

KMP Failure Array - Easy Computation

F[j] =length of the longest prefix of P that is a suffix of P[1..j].

Write down all prefixes (including empty word Λ). Then for $j \in \{0, \dots, m-1\}$ and each prefix of P check whether the prefix is a suffix of P[1..j].

j	P[1j]	Prefixes of P	longest	F[j]
0	٨	Λ , a, ab, aba, abab, ababa,	٨	0
1	b	Λ , a, ab, aba, abab, ababa,	٨	0
2	ba	Λ , a, ab, aba, abab, ababa,	a	1
3	bab	Λ , a, ab, aba, abab, ababa,	ab	2
4	baba	Λ , a, ab, aba, abab, ababa,	aba	3
5	babac	Λ , a, ab, aba, abab, ababa,	٨	0
6	babaca	Λ , a, ab, aba, abab, ababa,	a	1

(F[m-1]) is not needed for KMP automaton, but useful elsewhere)

This can clearly be computed in $O(m^3)$ time, but we can do better!

KMP Failure Array – Fast Computation

F[q-1] is maximum ℓ such that $P[0..\ell-1]$ is a suffix of P[1..q-1]. (For easier comparison, we have substituted $q \leftarrow j+1$.)

Idea: This is same as loop-invariant for KMP if we parse P[1..q-1].

KMP Failure Array – Fast Computation

F[q-1] is maximum ℓ such that $P[0..\ell-1]$ is a suffix of P[1..q-1]. (For easier comparison, we have substituted $q \leftarrow j+1$.)

Idea: This is same as loop-invariant for KMP if we parse P[1..q-1].

```
KMP::compute-failure-array(P)
1. Initialize array F as all-0
2. q \leftarrow 1 // index of P[1..m-1] to parse
3. \ell \leftarrow 0 // current state
4. while i < m do
5. // inv: P[0..\ell-1] equals last \ell characters of P[1..q-1]
6. F[q-1] \leftarrow \max\{F[q-1], \ell\}
7. if P[q] = P[\ell]
8. \ell \leftarrow \ell + 1
9. q \leftarrow q + 1
10. else if \ell > 0 then \ell \leftarrow F[\ell - 1]
11. else q \leftarrow q + 1
12. F[m-1] \leftarrow \ell
```

Note: $\ell < q$ at all times, so needed failure-arcs are already computed.

KMP Runtime

Parsing text T with |T| = n:

- Run-time is proportional to the number of arcs followed.
- Every loop and forward-arc consumes a character of T.
 So this happens at most n times

KMP Runtime

Parsing text T with |T| = n:

- Run-time is proportional to the number of arcs followed.
- Every loop and forward-arc consumes a character of T.
 So this happens at most n times
- For every failure-arc (leads left) there was a forward-arc that we followed earlier → happens at most n times

So the main routine (without *compute-failure-array*) takes O(n) time.

KMP Runtime

Parsing text T with |T| = n:

- Run-time is proportional to the number of arcs followed.
- Every loop and forward-arc consumes a character of T.
 So this happens at most n times
- For every failure-arc (leads left) there was a forward-arc that we followed earlier → happens at most n times

So the main routine (without compute-failure-array) takes O(n) time.

compute-failure-array parses a text of length $m-1 \rightsquigarrow O(m)$ time.

KMP Runtime

Parsing text T with |T| = n:

- Run-time is proportional to the number of arcs followed.
- Every loop and forward-arc consumes a character of T.
 So this happens at most n times
- For every failure-arc (leads left) there was a forward-arc that we followed earlier → happens at most n times

So the main routine (without *compute-failure-array*) takes O(n) time. compute-failure-array parses a text of length $m-1 \rightsquigarrow O(m)$ time.

Result: Pattern matching with Knuth-Morris-Pratt has O(n + m) worst-case run-time.

KMP Runtime

Parsing text T with |T| = n:

- Run-time is proportional to the number of arcs followed.
- Every loop and forward-arc consumes a character of T.
 So this happens at most n times
- For every failure-arc (leads left) there was a forward-arc that we followed earlier → happens at most n times

So the main routine (without *compute-failure-array*) takes O(n) time. compute-failure-array parses a text of length $m-1 \rightsquigarrow O(m)$ time.

Result: Pattern matching with Knuth-Morris-Pratt has O(n + m) worst-case run-time.

But we can do even better!

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on matched part of P.

Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on matched part of P.

Boyer-Moore exploits two insights:

- Eliminate guesses based on matched part of P.
 (good suffix heuristic)—very similar to KMP.
- Eliminate guesses based on mismatched characters of T
 (bad character jumps)—this is new.

Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on matched part of P.

Boyer-Moore exploits *two* insights:

- Eliminate guesses based on matched part of P.
 (good suffix heuristic)—very similar to KMP.
- Eliminate guesses based on mismatched characters of T
 (bad character jumps)—this is new.

The second insight turns out to be very helpful, and leads to fastest pattern matching on English text as long as we search *backwards*.

P: aldo

T: whereiswaldo

Forward-searching:

Reverse-searching:

P: aldo

T: whereiswaldo

Forward-searching:

W	h	е	r	е	i	S	W	а	-	d	0
а											

- w does not occur in P.
 - \Rightarrow shift pattern past w.

Reverse-searching:

w	h	е	r	е	i	s	W	а	-1	d	0
			0								

- r does not occur in P.
 - \Rightarrow shift pattern past r.

P: aldo

T: whereiswaldo

Forward-searching:

W	h	e	r	е	i	S	W	а	1	d	0
а											
	а										

- w does not occur in P.
 ⇒ shift pattern past w.
- h does not occur in P.
 ⇒ shift pattern past h.

Reverse-searching:

- r does not occur in P.
 ⇒ shift pattern past r.
- w does not occur in P.
 ⇒ shift pattern past w.

P: aldo

T: whereiswaldo

Forward-searching:

W	h	е	r	e	i	S	W	а	-1	d	0
а											
	а										
		а									

- w does not occur in P.
 ⇒ shift pattern past w.
- h does not occur in P.
 ⇒ shift pattern past h.

With forward-searching, fewer guesses are ruled out.

Reverse-searching:

	w	h	е	r	е	i	s	w	а	-1	d	О
1				0								
								0				
									а	_	d	0

- r does not occur in P.
 ⇒ shift pattern past r.
- w does not occur in P.
 ⇒ shift pattern past w.

This *bad character heuristic* works well with reverse-searching.

P: paper

T: feedall poor parrots

P: paper

T: feed all poorparrots

(1) Mismatched character in the text is a

P: paper

- (1) Mismatched character in the text is a
 - Shift the guess until a in P aligns with a in T
 - All skipped guessed are impossible since they do not match a

P: paper

T: feedallpoorparrots

[a] r
[p]

- (1) Mismatched character in the text is a

 Shift the guess until a in P aligns with a in T
 - ▶ All skipped guessed are impossible since they do not match a
- (2) Shift the guess until last p in P aligns with p in T
 - Use "last" since we cannot rule out this guess.

P: paper

- (1) Mismatched character in the text is a Shift the guess until a in P aligns with a in T
 - ▶ All skipped guessed are impossible since they do not match a
- (2) Shift the guess until *last* p in P aligns with p in T
 - ▶ Use "last" since we cannot rule out this guess.
- (3) As before, shift completely past o since o is not in P.

P: paper

- (1) Mismatched character in the text is a

 Shift the guess until a in P aligns with a in T
 - ▶ All skipped guessed are impossible since they do not match a
- (2) Shift the guess until last p in P aligns with p in T
 - ▶ Use "last" since we cannot rule out this guess.
- (3) As before, shift completely past o since o is not in P.
- (4) The shift that aligns with r has already been ruled out.
 - ▶ Bad character heuristic not helpful, shift guess right by one unit.

P: paper

T: feedallpoorparrots

r
[a]
r
[p]
r
er

- (1) Mismatched character in the text is a

 Shift the guess until a in P aligns with a in T
 - ▶ All skipped guessed are impossible since they do not match a
- (2) Shift the guess until last p in P aligns with p in T
 - Use "last" since we cannot rule out this guess.
- (3) As before, shift completely past o since o is not in P.
- (4) The shift that aligns with r has already been ruled out.
 - Bad character heuristic not helpful, shift guess right by one unit.
- (5) Shift completely past $o \rightarrow out$ of bounds.

Boyer-Moore Algorithm – incomplete

```
Boyer-Moore::pattern-matching(T, P)
1. i \leftarrow m-1, j \leftarrow m-1
2. while i < n and j > 0 do
       // current guess begins at index i-j
3. if T[i] = P[j]
4. i \leftarrow i - 1 // go backwards
5. j \leftarrow j - 1
6. else
7. i \leftarrow ???
8. j \leftarrow m-1 // restart from right end
9. if j = -1 return "found at T[i+1..i+m]"
10. else return FAIL
```

Two steps missing:

- Need to pre-compute for all characters where they are in P.
- Need to determine how to do the update *i* at a mismatch.

Helper-Array for Bad Character Heuristic

- ullet Build the helper-array L mapping Σ to integers
- L[c] is the largest index i such that P[i] = c

Pattern:

Helper-array:

char	р	а	е	r	all others
$L[\cdot]$	2	1	3	4	?

Helper-Array for Bad Character Heuristic

- ullet Build the helper-array L mapping Σ to integers
- L[c] is the largest index i such that P[i] = c

Pattern:

0	1	2	3	4
р	а	р	е	r

Helper-array:

char	р	a	e	r	all others
<i>L</i> [·]	2	1	3	4	?

- What value should be used if c not in P?
 - ▶ We want to shift past *c* entirely.
 - Equivalently view this as 'c is to the left of P'
 - Equivalently: c is at P[-1], so set L[c] = -1

Helper-Array for Bad Character Heuristic

- ullet Build the helper-array L mapping Σ to integers
- L[c] is the largest index i such that P[i] = c

Pattern:

0	1	2	3	4
р	а	p	е	r

Helper-array:

char	р	a	е	r	all others
L[·]	2	1	3	4	?

- What value should be used if c not in P?
 - ▶ We want to shift past *c* entirely.
 - ► Equivalently view this as 'c is to the left of P'
 - Equivalently: c is at P[-1], so set L[c] = -1
- We can build this in time $O(m + |\Sigma|)$ with simple for-loop

BoyerMoore::bad-character-helper-array(P[0..m-1])

- 1. initialize array L indexed by Σ with all -1
- 2. **for** $j \leftarrow 0$ **to** m-1 **do** $L[P[j]] \leftarrow j$
- 3. return L

Bad character heuristic - update formula

"Good" case: L[c] < j, so c is left of P[j].

Want: $i^{\text{new}} = \text{index in } T \text{ that corresponds to } j^{\text{new}}$.

Bad character heuristic – update formula

"Good" case: L[c] < j, so c is left of P[j].

Want: $i^{\text{new}} = \text{index in } T \text{ that corresponds to } j^{\text{new}}$.

ullet $\Delta_1 =$ amount that we should shift $= j^{\mathrm{old}} - L[c]$

Bad character heuristic – update formula

"Good" case: L[c] < j, so c is left of P[j].

Want: $i^{\text{new}} = \text{index in } T \text{ that corresponds to } j^{\text{new}}$.

- $\Delta_1 =$ amount that we should shift $= j^{\text{old}} L[c]$
- $\Delta_2=$ how much we had compared $=(m{-}1)-j^{\mathrm{old}}$

Bad character heuristic - update formula

"Good" case: L[c] < j, so c is left of P[j].

Want: $i^{\text{new}} = \text{index in } T \text{ that corresponds to } j^{\text{new}}$.

- ullet $\Delta_1 =$ amount that we should shift $= j^{
 m old} \mathcal{L}[c]$
- Δ_2 = how much we had compared = $(m-1) j^{\text{old}}$

•
$$i^{\text{new}} = i^{\text{old}} + \Delta_2 + \Delta_1 = i^{\text{old}} + (m-1) - L[c]$$

$$= i^{\text{old}} + (m-1) - \min\{L[c], j^{\text{old}} - 1\}$$

Spring 2024

Bad character heuristic - update formula

"Good" case: L[c] < j, so c is left of P[j].

Want: $i^{\text{new}} = \text{index in } T \text{ that corresponds to } j^{\text{new}}$.

- ullet $\Delta_1=$ amount that we should shift $=j^{
 m old}-{\it L[c]}$
- $\Delta_2 =$ how much we had compared $= (m-1) j^{\mathrm{old}}$

•
$$i^{\text{new}} = i^{\text{old}} + \Delta_2 + \Delta_1 = i^{\text{old}} + (m-1) - L[c]$$

$$= i^{\text{old}} + (m-1) - \min\{L[c], j^{\text{old}} - 1\}$$

Can show: The same formula also holds for the other cases.

Boyer-Moore Algorithm

```
Boyer-Moore::pattern-matching(T, P)
                                                 // simplified version
1. L \leftarrow bad-character-helper-array(P)
2. i \leftarrow m-1, j \leftarrow m-1
3. while i < n and j > 0 do
         if T[i] = P[i]
4
         i \leftarrow i - 1
5.
         j \leftarrow j-1
7.
         else
8.
              i \leftarrow i + m - 1 - \min\{L[T[i]], j - 1\}
9.
              i \leftarrow m-1
10. if j = -1 return "found at T[i+1..i+m]"
11. else return FAIL
```

For *full* Boyer-Moore algorithm:

- precompuate helper-array G for good-suffix heuristic from P
- update-formula becomes $i \leftarrow i + m-1 \min\{L[T[i]], G[j]\}$

Doing examples is easy, but computing G is complicated (no details).

P: G C G C T A G C

T: G C G C T G G C C A G C G C T A G C G

Doing examples is easy, but computing G is complicated (no details).

P: GCGCTAGC

Do smallest shift so that matched text $\ensuremath{\mathsf{GC}}$ fits the new guess.

Doing examples is easy, but computing G is complicated (no details).

P: G C G C T A G C

T: G C G C T G G C C A G C G C T A G C

Do smallest shift so that matched text GC fits the new guess.

Doing examples is easy, but computing G is complicated (no details).

P: G C G C T A G C

T: G C G C T G G C C A G C G C T A G C

Do smallest shift so that matched text $\ensuremath{\mathsf{GC}}$ fits the new guess.

						(G)	(C)	Т	Α	G	С				
Sometimes only part of matched text AGC fits.															
										(G)	(C)				

Summary:

- Boyer-Moore performs very well (even without good suffix heuristic).
- ullet On typical *English text* Boyer-Moore looks at only pprox 25% of T
- Worst-case run-time for is O(mn), but in practice much faster. [There are ways to ensure O(n) run-time. No details.]

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Tries of Suffixes and Suffix Trees

Recall: P occurs in $T \Leftrightarrow P$ is a prefix of some suffix of T.

- Idea: Build a data structure that stores all suffixes of T.
 - ▶ So we preprocess the text *T* rather than the pattern *P*
 - ► This is useful if we want to search for many patterns P within the same fixed text T.
- Naive idea: Store the suffixes in a trie.
 - ▶ $|T| = n \Rightarrow$ the n+1 suffixes together have $\binom{n+1}{2} \in \Theta(n^2)$ characters
 - This wastes space

Tries of Suffixes and Suffix Trees

Recall: P occurs in $T \Leftrightarrow P$ is a prefix of some suffix of T.

- Idea: Build a data structure that stores all suffixes of T.
 - ► So we preprocess the text *T* rather than the pattern *P*
 - ► This is useful if we want to search for many patterns P within the same fixed text T.
- Naive idea: Store the suffixes in a trie.
 - ▶ $|T| = n \Rightarrow$ the n+1 suffixes together have $\binom{n+1}{2} \in \Theta(n^2)$ characters
 - This wastes space
- Suffix tree saves space in multiple ways:
 - ▶ Store suffixes implicitly via indices into *T*.
 - Use a compressed trie.
 - ▶ Then the space is O(n) since we store n+1 words.

Trie of suffixes: Example

T= bananaban has suffixes {bananaban, ananaban, anana

Tries of suffixes

Store suffixes via indices:

Suffix tree

Suffix tree: Compressed trie of suffixes where leaves store indices.

More on Suffix Trees

Pattern Matching:

- *prefix-search* for *P* in compressed trie.
- This returns longest word with prefix *P*, hence leftmost occurrence.
- Run-time: $O(|\Sigma|m)$.

Building:

- Text T has n characters and n+1 suffixes
- We can build the suffix tree by inserting each suffix of T into a compressed trie. This takes time $\Theta(|\Sigma|n^2)$.
- There is a way to build a suffix tree of T in $\Theta(|\Sigma|n)$ time. This is quite complicated and beyond the scope of the course.

Summary: Theoretically good, but construction is slow or complicated, and lots of space-overhead → rarely used.

$$P = \begin{array}{c|ccc} 0 & 1 & 2 \\ \hline a & n & n \end{array}$$

If 'no such child' before we reach end of P: FAIL

$$T = egin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline b & a & n & a & n & a & b & a & n & \$ \end{bmatrix}$$

$$P = \begin{array}{c|c} 0 & 1 \\ \hline b & e \end{array}$$

If we reach node z at end of P: Compare P to z.leaf.

$$P = \begin{array}{c|c} 0 & 1 \\ \hline b & e \end{array}$$

If we reach node z at end of P: Compare P to z.leaf.

Spring 2024

If we reach node z at end of P: Compare P to z.leaf.

Spring 2024

T[1..9]

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Suffix Arrays

- Relatively recent development (popularized in the 1990s)
- Sacrifice some performance for simplicity:
 - Slightly slower (by a log-factor) than suffix trees.
 - Much easier to build.
 - Much simpler pattern matching.
 - Very little space; only one array.

Idea:

- Store suffixes implicitly (by storing start-indices)
- Store sorting permutation of the suffixes of T.

Suffix Array Example

Text 7: b a n a n a b a n

i	suffix $T[in]$				
0	bananaban\$				
1	ananaban\$				
2	nanaban\$				
3	anaban\$				
4	naban\$				
5	aban\$				
6	ban\$				
7	an\$				
8	n\$				
9	\$				

sort lexicographically

j	$A^{\mathrm{suffix}}[j]$	
0	9	\$
1	5	aban\$
2	7	an\$
3	3	anaban\$
4	1	ananaban\$
5	6	ban\$
6	0	bananaban\$
7	8	n\$
8	4	naban\$
9	2	nanaban\$

Suffix array

We do *not* store the suffixes, but they are easy to retrieve if needed.

Suffix Array Construction

- Easy to construct using MSD-Radix-Sort.
 - ▶ Pad suffixes with trailing \$ to achieve equal length.
 - ► Fast in practice; suffixes are unlikely to share many leading characters.
 - ▶ But worst-case run-time is $\Theta(n^2)$
 - ★ *n* rounds of recursions (have *n* chars)
 - ★ Each round takes $\Theta(n)$ time (bucket-sort)

Suffix Array Construction

- Easy to construct using MSD-Radix-Sort.
 - ▶ Pad suffixes with trailing \$ to achieve equal length.
 - ► Fast in practice; suffixes are unlikely to share many leading characters.
 - ▶ But worst-case run-time is $\Theta(n^2)$
 - ★ n rounds of recursions (have n chars)
 - ★ Each round takes $\Theta(n)$ time (bucket-sort)
- Idea: We do not need n rounds!

- Consider sub-array after one round.
 These have same leading char. Ties are broken by rest of words.
 But rest of words are also suffixes → sorted elsewhere
 We can double length of sorted part every round.
- ▶ $O(\log n)$ rounds enough $\Rightarrow O(n \log n)$ run-time
- You do not need to know details (→ cs482).
- Construction-algorithm: MSD-radix-sort plus some bookkeeping
 - A bit complicated to explain but easy to implement

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

$$P = ban$$
:

cn!			
	j	$A^{\text{suffix}}[j]$	$T[A^{\text{suffix}}[j]n-1]$
$\ell \to$	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
$\nu \rightarrow$	4	1	ananaban\$
	5	6	ban\$
	6	0	bananaban\$
	7	8	n\$
	8	4	naban\$
$r \rightarrow$	9	2	nanaban\$

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

P =ban:

cn!			
	j	$A^{\text{suffix}}[j]$	$T[A^{\text{suffix}}[j]n-1]$
	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
	4	1	ananaban\$
$\ell \to$	5	6	ban\$
	6	0	bananaban\$
$\nu \rightarrow$	7	8	n\$
	8	4	naban\$
$r \rightarrow$	9	2	nanaban\$

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

ica. apply billary scarcil:			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	j	$A^{\text{suffix}}[j]$	$T[A^{\text{suffix}}[j]n-1]$
P = ban:	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
	4	1	ananaban\$
$ u$ = ℓ $ ightarrow$ r $ ightarrow$	5	6	ban\$ found
r ightarrow	6	0	bananaban\$
	7	8	n\$
	8	4	naban\$
	9	2	nanaban\$

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

 $A^{\text{suffix}}[i]$ $T[A^{\text{suffix}}[j]..n-1]$ P = ban: 0 aban\$ an\$ 3 anaban\$ 4 ananaban\$ $\nu = \ell \rightarrow$ 5 6 ban\$ found bananaban\$ n\$ 8 naban\$ 9 nanaban\$

- $O(\log n)$ comparisons.
- Each comparison is a *strncmp* of *P* with a suffix
- O(m) time per comparison \Rightarrow run-time $O(m \log n)$

```
SuffixArray::pattern-matching(T, P, A^{suffix})
```

- 1. $\ell \leftarrow 0$, $r \leftarrow \text{last index of } A^{\text{suffix}}$
- 2. while $(\ell \leq r)$

3.
$$\nu \leftarrow \lfloor \frac{\ell+r}{2} \rfloor$$

- 4. $g \leftarrow A^{\text{suffix}}[\nu]$ // suffix of middle index begins at T[g]
- 5. $s \leftarrow strncmp(T, P, g, m)$

// Case g+m>n is handled correctly if $\mathcal T$ has end-sentinel

- 6. **if** (s < 0) **do** $\ell \leftarrow \nu + 1$
- 7. **else if** (s > 0) **do** $r \leftarrow \nu 1$
- 8. **else return** "found at guess g"
- return FAIL
- Does not always return leftmost occurrence.
- Can find leftmost occurrence (and reduce run-time to $O(m + \log n)$) with further pre-computations (no details).

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

String Matching Conclusion

		Preprocess P				Preprocess T	
	Brute- Force	Karp- Rabin	DFA	Knuth- Morris- Pratt	Boyer- Moore	Suffix Tree	Suffix Array
Preproc.	_	O(m)	$O(m \Sigma)$	O(m)	O(m)	$O(n^2 \Sigma)$ $[O(n \Sigma)]$	$O(n\log n)$ $[O(n)]$
Search time	O(nm)	O(n+m) expected	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(n) or better	$O(m \Sigma)$	$O(m\log n)$ $[O(m+\log n)]$
Extra space	_	O(1)	$O(m \Sigma)$	<i>O</i> (<i>m</i>)	<i>O</i> (<i>m</i>)	<i>O</i> (<i>n</i>)	O(n)

(Some additive $|\Sigma|$ -terms are not shown.)

- Our algorithms stopped once they have found one occurrence.
- Most of them can be adapted to find all occurrences within the same worst-case run-time.