CS 240 – Data Structures and Data Management

Module 9: String Matching

Mark Petrick, Éric Schost

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2024

version 2024-07-03 12:49

Outline

[String Matching](#page-2-0)

- **•** [Introduction](#page-2-0)
- [Karp-Rabin Algorithm](#page-10-0)
- **[String Matching with Finite Automata](#page-15-0)**
- [Knuth-Morris-Pratt algorithm](#page-20-0)
- [Boyer-Moore Algorithm](#page-39-0)
- **•** [Suffix Trees](#page-68-0)
- [Suffix Arrays](#page-80-0)
- **[Conclusion](#page-91-0)**

Outline

9 [String Matching](#page-2-0)

• [Introduction](#page-2-0)

- [Karp-Rabin Algorithm](#page-10-0)
- **[String Matching with Finite Automata](#page-15-0)**
- [Knuth-Morris-Pratt algorithm](#page-20-0)
- [Boyer-Moore Algorithm](#page-39-0) \bullet
- **[Suffix Trees](#page-68-0)**
- [Suffix Arrays](#page-80-0)
- **[Conclusion](#page-91-0)**

Pattern Matching Introduction

- Search for a string (pattern) in a large body of text. Useful for
	- ▶ Information Retrieval (text editors, search engines)
	- \blacktriangleright Bioinformatics
	- ▶ Data Mining
- T[0*..*n − 1] The text (or haystack) being searched within

Example: $T =$ "Where is he?"

P[0*..*m − 1] – The pattern (or needle) being searched for

Example: $P_1 =$ "he" $P_2 =$ "who"

o occurrence: index *i* such that $T[i..i+m-1] = P$, i.e.,

 $P[i] = T[i + i]$ for $0 \le i \le m - 1$

- Convention: return smallest such *i* (leftmost occurrence)
- \bullet If P does not occur in T, return FAIL

Pattern Matching Observation

Recall:

- **Substring** $T[i..j]$ for $0 \le i \le j+1 \le n$: a string of length $j-i+1$ which consists of characters $T[i], \ldots T[j]$ in order.
- **Prefix** of T : a substring $T[0..i-1]$ of T for some $0 \le i \le n$.
- **Suffix** of T : a substring $T[i..n-1]$ of T for some $0 \le i \le n$.
- The **empty string** Λ is also considered a substring, prefix and suffix.

Observe: P occurs in T

- \Leftrightarrow P is a substring of T.
- \Leftrightarrow P is a suffix of some prefix of T.
- \Leftrightarrow P is a prefix of some suffix of T.

General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:

- A guess is a position g such that P might start at $T[i]$. Valid guesses (initially) are $0 \leq g \leq n-m$.
- **A check** of a guess is a single position *j* with $0 \leq j \leq m$ where we compare $T[g + j]$ to $P[j]$.
- \bullet We do *strncmp* to compare a guess to P. This uses m checks in the worst-case, but may use (many) fewer checks if there is a *mismatch*.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess (shaded gray).

Brute-force Algorithm

Idea: Check every possible guess.

Note: strncmp takes $\Theta(m)$ time.

 $strncmp(T, P, g \leftarrow 0, m)$ // Compare m chars of T and P, starting at $T[g]$ 1. **for** $i \leftarrow 0$ **to** $m - 1$ **do** 2. **if** $T[g + j]$ is before $P[j]$ in Σ then return -1 3. **if** $T[g + j]$ is after $P[j]$ in Σ then return 1 4. **return** 0

Brute-Force Example

• Example: $T =$ abbbababbab, $P =$ abba

• What is the worst possible input?

Brute-Force Example

• Example: $T =$ abbbababbab, $P =$ abba

- What is the worst possible input? $P = a^{m-1}b, \; T = a^n$
- Worst case performance $\Theta((n-m+1)\cdot m)$
- This is too slow (quadratic if $m \approx n/2$).

How to improve?

General idea of **preprocessing**: Do work on some parts of input beforehand, so that the actual **query** (with rest of input) then goes faster.

For pattern matching, we have two options:

- Do preprocessing on the pattern P
	- \triangleright We eliminate guesses based on characters we have seen.
- Do preprocessing on the text T
	- \triangleright We create a data structure to find matches easily.

Outline

[String Matching](#page-2-0)

• [Introduction](#page-2-0)

• [Karp-Rabin Algorithm](#page-10-0)

- **[String Matching with Finite Automata](#page-15-0)**
- [Knuth-Morris-Pratt algorithm](#page-20-0)
- [Boyer-Moore Algorithm](#page-39-0) \bullet
- [Suffix Trees](#page-68-0) \bullet
- [Suffix Arrays](#page-80-0)
- **[Conclusion](#page-91-0)**

Karp-Rabin Fingerprint Algorithm – Idea

Idea: Use **fingerprints** to eliminate guesses

- Need function $h : \{ \text{strings of length } m \} \rightarrow \{0, \ldots, M-1\}$ (Call these 'hash-function' and 'table-size', but there is no dictionary here)
- **Insight:** If $h(P) \neq h(T[g..g+m-1])$ then guess g cannot work

Example: $\Sigma = \{0-9\}$, $P = 92653$, $T = 31415926535$

• Use standard hash-function for words, with $R = |\Sigma|$ and $M = 97$:

$$
h(x_0 \ldots x_4) = (x_0 x_1 x_2 x_3 x_4)_{10} \bmod 97
$$

• Pre-compute $h(P) = 92653 \text{ mod } 97 = 18$.

M. Petrick, É. Schost (CS-UW) and [CS240 – Module 9](#page-0-0) Spring 2024 8 / 44

Karp-Rabin Fingerprint Algorithm – First Attempt

\n- *Karp-Rabin-Simple::pattern-matching*(*T*,*P*)
\n- 1.
$$
h_P \leftarrow h(P[0..m-1)])
$$
\n- 2. **for** *g* ← 0 to *n* − *m*
\n- 3. $h_T \leftarrow h(T[g..g+m-1])$ // **not** constant time
\n- 4. **if** $h_T = h_P$
\n- 5. **if** *strncmp*(*T*,*P*,*g*,*m*) = 0
\n- 6. **return** "found at guess *g*"
\n- 7. **return** *FAIL*
\n

- Never misses a match: $h(T[g..g+m-1]) \neq h(P) \Rightarrow$ guess g is not P
- h(T[g*..*g+m−1]) depends on m characters, so naive computation takes $\Theta(m)$ time per guess
- Running time is $\Theta(mn)$ if P is not in T. Can we improve this?

Karp-Rabin Fingerprint Algorithm – Fast Update

Idea: Consecutive guesses share m−1 characters

 \Rightarrow for suitable hash-functions, can compute next fingerprint from previous

Example: $15926 = (41592 - 4 \cdot 10000) \cdot 10 + 6$

$$
\underbrace{15926 \mod 97}_{h(15926)} = \left(\left(\underbrace{41592 \mod 97}_{\text{previous fingerprint}} -4 \cdot \underbrace{10000 \mod 97}_{9 \text{ (pre-computed)}} \right) \cdot 10 + 6 \right) \mod 97
$$
\n
$$
= \left((76 - 4 \cdot 9) \cdot 10 + 6 \right) \mod 97 = 18
$$

So pre-compute R^{m-1} mod M (here 10000 mod 97 $=$ 9)

- Compute leftmost fingerprint
- Use previous fingerprint to compute next fingerprint in $O(1)$ time
- Run-time: $O(m + n + m \cdot #$ {false positives})

Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin::pattern-matching(T*,* P) // rolling hash-function 1. $M \leftarrow$ suitable prime number 2. $h_P \leftarrow h(P[0..m-1)])$ 3. $s \leftarrow R^{m-1} \mod M$ 4. $h_T \leftarrow h(T[0..m-1)])$ 5. **for** $g \leftarrow 0$ to $n - m$ 6. **if** $h_T = h_P$ 7. **if** strncmp $(T, P, g, m) = 0$ **return** "found at guess g " 8. **if** g *<* n − m // compute fingerprint for next guess 9. $h_{\mathcal{T}} \leftarrow ((h_{\mathcal{T}} - \mathcal{T}[g] \cdot s) \cdot R + \mathcal{T}[g{+}m])$ mod M 10. **return** "FAIL"

- Choose "table size" M to be random prime in $\{2, \ldots, mn^2\}$
- Can show: Then P(at least one false positive) $\in O(\frac{1}{n})$ $\frac{1}{n}$
- Expected time $O(m+n)$, worst-luck time $O(m \cdot n)$ (extremely unlikely)
- \bullet Improvement: reset M after a false positive

Outline

[String Matching](#page-2-0)

- **·** [Introduction](#page-2-0)
- [Karp-Rabin Algorithm](#page-10-0)

• [String Matching with Finite Automata](#page-15-0)

- [Knuth-Morris-Pratt algorithm](#page-20-0)
- [Boyer-Moore Algorithm](#page-39-0) \bullet
- [Suffix Trees](#page-68-0) \bullet
- [Suffix Arrays](#page-80-0)
- **[Conclusion](#page-91-0)**

String Matching with Finite Automata

Example: Automaton for the pattern $P =$ ababaca

0) → (1) → (2) → (3) → (4) → (5) → (6) → (7 a ${a, b, c}$ $b \bigcap a \bigcap b \bigcap a \bigcap c \bigcap a$ Σ

You should be familiar with:

- \bullet finite automaton, DFA, NFA, converting NFA to DFA
- transition function, states, start state, accepting states $\Big\}$

 $\sqrt{ }$

 $\left\lfloor \right\rfloor$

 \setminus

String Matching with Finite Automata

Example: Automaton for the pattern $P =$ ababaca

0) → (1) → (2) → (3) → (4) → (5) → (6) → (7 a ${a, b, c}$ $b \bigcap a \bigcap b \bigcap a \bigcap c \bigcap a$ Σ

You should be familiar with:

- \bullet finite automaton, DFA, NFA, converting NFA to DFA
- transition function, states, start state, accepting states $\Big\}$
- This is a **N**on-deterministic **F**inite **A**utomaton
- **Forward-arc** $\overline{(j)} \rightarrow \overline{(j+1)}$ labelled with P[j]
- \bullet State j expresses "we have j leftmost characters of P'
- NFA accepts T if and only if T contains P

 $\sqrt{ }$

 $\left\lfloor \right\rfloor$

 \setminus

String Matching with Finite Automata

Example: Automaton for the pattern $P =$ ababaca

0) → (1) → (2) → (3) → (4) → (5) → (6) → (7 a ${a, b, c}$ $b \bigcap a \bigcap b \bigcap a \bigcap c \bigcap a$ Σ

You should be familiar with:

- \bullet finite automaton, DFA, NFA, converting NFA to DFA
- transition function, states, start state, accepting states $\Big\}$
- This is a **N**on-deterministic **F**inite **A**utomaton
- **Forward-arc** $\overline{(j)} \rightarrow \overline{(j+1)}$ labelled with P[j]
- \bullet State j expresses "we have j leftmost characters of P'
- NFA accepts T if and only if T contains P

But evaluating NFAs is very slow.

 $\sqrt{ }$

 $\left\lfloor \right\rfloor$

 \setminus

String matching with DFA

Can show: There exists an equivalent **D**eterministic **F**inite **A**utomaton:

- Same states, forward-arcs, start state, accepting states.
- Easy to test whether P is in T .
- But how do we find the backward-arcs?

(We will not give the details of this since there is an even better automaton.)

Outline

[String Matching](#page-2-0)

- [Introduction](#page-2-0)
- [Karp-Rabin Algorithm](#page-10-0)
- **[String Matching with Finite Automata](#page-15-0)**

• [Knuth-Morris-Pratt algorithm](#page-20-0)

- [Boyer-Moore Algorithm](#page-39-0)
- [Suffix Trees](#page-68-0) \bullet
- [Suffix Arrays](#page-80-0)
- **[Conclusion](#page-91-0)**

Knuth-Morris-Pratt Motivation

- Same states, forward-arcs, start state, accepting states.
- Use a new type of transition \times ("failure") but stay deterministic:
	- ▶ One per state 1*, . . . ,* m−1 , use it only if no other transition fits.
	- Does not consume a character.

Knuth-Morris-Pratt Motivation

- Same states, forward-arcs, start state, accepting states.
- Use a new type of transition \times ("failure") but stay deterministic:
	- ▶ One per state 1*, . . . ,* m−1 , use it only if no other transition fits.
	- Does not consume a character.
- We will (later) determine failure-arcs such that the automaton accepts T if and only if T contains ababaca
- Store the failure-arcs in an array F[0*..*m−1] (index off by one!):

j	0	1	2	3	4	5	6
failure arc from (j) to	NA	0	0	1	2	3	0
$F[j]$	0	0	1	2	3	0	?

Knuth-Morris-Pratt Algorithm

There is no need to build an automaton; 'parsing' can be described with variables and failure-array F.

```
KMP::pattern-matching(T, P)
1. F \leftarrow compute-failure-array(P)2. i \leftarrow 0 // character of T to parse<br>3. i \leftarrow 0 // current state
                     \frac{1}{2} current state
4. while i < n do
5. // inv: P[0..j−1] is a suffix of T[0..i−1]
6. if P[i] = T[i]7. if j = m - 1 then return "found at guess i - m + 1"
8. else // forward-arc
9. i \leftarrow i + 110. i \leftarrow j + 111. else // next character is mismatch
12. if j > 0 then j \leftarrow F[j-1] // failure-arc
13. else i \leftarrow i + 1 // loop at 0
14. return FAIL
```
String matching with KMP – Example

Example: $T =$ ababababaca, $P =$ ababaca

(after reading this character)

M. Petrick, É. Schost (CS-UW) [CS240 – Module 9](#page-0-0) Spring 2024 16 / 44

String matching with KMP – Failure-function

Assume that we reach a mismatch (say at guess g):

- Consider guesses at index $g+1, g+2, \ldots$. Could they match?
- The matched characters will rule out many of these guesses.
- We want the leftmost guess that cannot be ruled out.
- **Note:** This depends only on P, and not on T. In particular it can be *pre-computed*.

M. Petrick, É. Schost (CS-UW) [CS240 – Module 9](#page-0-0) Spring 2024 17 / 44

String matching with KMP – Failure-function

• Consider again the example $P =$ ababaca.

String matching with KMP – Failure-function

• Consider again the example $P =$ ababaca. $P:$ 0 1 2 3 4 5 6 $\mathtt{a} \mid \mathtt{b} \mid \mathtt{a} \mid \mathtt{b} \mid \mathtt{a} \mid \mathtt{c} \mid \mathtt{a}$ P (shifted): (a) b $|a|$ b $|a|$ c $|a$ P 0 1 2 3 4 5 6 a | b | a | b <mark>| a |</mark> c | a P (shifted): $(a)(b) a b a c a$ $P: \begin{array}{|c|c|c|c|c|}\n\hline\na & b & a & c & a\n\end{array}$ P (shifted): $(a)(b)(a) b a c a$ • Sometimes nothing fits. Then shift past matched part. P: 0 1 2 3 4 5 6 $\mathtt{a} \, | \, \mathtt{b} \, | \, \mathtt{a} \, | \, \mathtt{b} \, | \, \mathtt{a} \, | \, \mathtt{c} \, | \, \mathtt{a}$ P (shifted): $|a|b|a|b|a|c$ P: 0 1 2 3 4 5 6 $\mathtt{a} \mid \mathtt{b} \mid \mathtt{a} \mid \mathtt{b} \mid \mathtt{a} \mid \mathtt{c} \mid \mathtt{a}$ P (shifted): $|a|b|a|b|a|c$ $P: \begin{array}{|c|c|c|c|c|}\n\hline\na & b & a & c & a\n\end{array}$ P (shifted): $|a|b|a|b|a|c|a$

 \bullet Store in $F[\cdot]$ how many characters are matched in new shift.

String matching with KMP – Failure function

- **Definition:** $F[j] =$ number of re-used characters if $P[0..j]$ matched
- For $P =$ ababaca, we get $j \parallel 0 \mid 1$ $\begin{array}{|c|c|c|c|c|}\n\hline\n2 & 3 & 4 & 5 & 6 \\
\hline\n1 & 2 & 3 & 0 & ? \\
\hline\n\end{array}$

(This matches exactly the failure-arcs in KMP-automaton.)

String matching with KMP – Failure function

- **Definition:** $F[j] =$ number of re-used characters if $P[0..j]$ matched
- For $P =$ ababaca, we get $j \parallel 0 \parallel 1$ $\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline j & 0 & 1 & 2 & 3 & 4 \ \hline \end{array}$ (This matches exactly the failure-arcs in KMP-automaton.)
- In general: We must find a long prefix of P that is a suffix of $P[0..j]$ (except it should not be **all** of P[0*..*j])

Equivalently: We must find a long prefix of P that is a suffix of P[1*..*j]

String matching with KMP – Failure function

- **Definition:** $F[j] =$ number of re-used characters if $P[0..j]$ matched
- For $P=$ ababaca, we get $j \parallel 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6$ $F[j] \parallel 0 \mid 0 \mid 1 \mid 2 \mid 3 \mid 0 \mid ?$ (This matches exactly the failure-arcs in KMP-automaton.)
- In general: We must find a long prefix of P that is a suffix of $P[0..j]$ (except it should not be **all** of P[0*..*j])

Equivalently: We must find a long prefix of P that is a suffix of P[1*..*j]

Result: $F[j] =$ length of the longest prefix of P that is a suffix of $P[1..j]$.

KMP Failure Array – Easy Computation

 $F[j] =$ length of the longest prefix of P that is a suffix of $P[1..j]$.

Write down all prefixes (including empty word Λ). Then for $j \in \{0, \ldots, m-1\}$ and each prefix of P check whether the prefix is a suffix of P[1*..*j].

This can clearly be computed in $O(m^3)$ time, but we can do better!

M. Petrick, É. Schost (CS-UW) [CS240 – Module 9](#page-0-0) Spring 2024 20 / 44

KMP Failure Array – Fast Computation F[q−1] is maximum *ℓ* such that P[0*..ℓ*−1] is a suffix of P[1*..*q−1]. (For easier comparison, we have substituted $q \leftarrow j + 1$.)

Idea: This is same as loop-invariant for KMP if we parse P[1*..*q−1].

KMP Failure Array – Fast Computation

F[q−1] is maximum *ℓ* such that P[0*..ℓ*−1] is a suffix of P[1*..*q−1].

(For easier comparison, we have substituted $q \leftarrow j + 1$.)

Idea: This is same as loop-invariant for KMP if we parse P[1*..*q−1].

```
KMP::compute-failure-array(P)
1. Initialize array F as all-0
2. q \leftarrow 1 // index of P[1..m-1] to parse
3. \ell \leftarrow 0 // current state
4. while i < m do
5. // inv: P[0..ℓ−1] equals last ℓ characters of P[1..q−1]
6. F[q-1] \leftarrow \max\{F[q-1], \ell\}7. if P[q] = P[\ell]8. \ell \leftarrow \ell + 19. q \leftarrow q + 110. else if \ell > 0 then \ell \leftarrow F[\ell-1]11. else q \leftarrow q + 112. F[m-1] \leftarrow \ell
```
Note: *ℓ <* q at all times, so needed failure-arcs are already computed.

KMP Runtime

Parsing text T with $|T| = n$:

- Run-time is proportional to the number of arcs followed.
- \bullet Every loop and forward-arc consumes a character of T. So this happens at most n times
- For every failure-arc (leads left) there was a forward-arc that we followed earlier \rightsquigarrow happens at most *n* times

KMP Runtime

Parsing text T with $|T| = n$:

- Run-time is proportional to the number of arcs followed.
- \bullet Every loop and forward-arc consumes a character of T. So this happens at most n times
- For every failure-arc (leads left) there was a forward-arc that we followed earlier \rightsquigarrow happens at most *n* times
- So the main routine (without *compute-failure-array*) takes $O(n)$ time.
KMP Runtime

Parsing text T with $|T| = n$:

- Run-time is proportional to the number of arcs followed.
- \bullet Every loop and forward-arc consumes a character of T. So this happens at most n times
- For every failure-arc (leads left) there was a forward-arc that we followed earlier \rightsquigarrow happens at most *n* times
- So the main routine (without *compute-failure-array*) takes $O(n)$ time.

compute-failure-array parses a text of length $m-1 \leadsto O(m)$ time.

KMP Runtime

Parsing text T with $|T| = n$:

- Run-time is proportional to the number of arcs followed.
- \bullet Every loop and forward-arc consumes a character of T. So this happens at most n times
- For every failure-arc (leads left) there was a forward-arc that we followed earlier \rightsquigarrow happens at most *n* times

So the main routine (without *compute-failure-array*) takes $O(n)$ time. compute-failure-array parses a text of length $m-1 \rightsquigarrow O(m)$ time.

Result: Pattern matching with Knuth-Morris-Pratt has $O(n + m)$ worst-case run-time.

KMP Runtime

Parsing text T with $|T| = n$:

- Run-time is proportional to the number of arcs followed.
- \bullet Every loop and forward-arc consumes a character of T. So this happens at most n times
- For every failure-arc (leads left) there was a forward-arc that we followed earlier \rightsquigarrow happens at most *n* times

So the main routine (without *compute-failure-array*) takes $O(n)$ time. compute-failure-array parses a text of length $m-1 \rightsquigarrow O(m)$ time.

Result: Pattern matching with Knuth-Morris-Pratt has $O(n + m)$ worst-case run-time.

But we can do even better!

Outline

[String Matching](#page-2-0)

- **·** [Introduction](#page-2-0)
- [Karp-Rabin Algorithm](#page-10-0)
- **[String Matching with Finite Automata](#page-15-0)**
- [Knuth-Morris-Pratt algorithm](#page-20-0)

[Boyer-Moore Algorithm](#page-39-0)

- [Suffix Trees](#page-68-0) \bullet
- [Suffix Arrays](#page-80-0)
- **[Conclusion](#page-91-0)**

Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on matched part of P.

Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on matched part of P.

Boyer-Moore exploits two insights:

- Eliminate guesses based on matched part of P. (**good suffix heuristic**)—very similar to KMP.
- Eliminate guesses based on mismatched characters of T (**bad character jumps**)—this is new.

Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on matched part of P.

Boyer-Moore exploits two insights:

- Eliminate guesses based on matched part of P. (**good suffix heuristic**)—very similar to KMP.
- Eliminate guesses based on mismatched characters of T (**bad character jumps**)—this is new.

The second insight turns out to be very helpful, and leads to fastest pattern matching on English text as long as we search *backwards*.

M. Petrick, É. Schost (CS-UW) [CS240 – Module 9](#page-0-0) Spring 2024 23 / 44

- $P₁$ aldo
- T: whereiswaldo

Forward-searching:

Reverse-searching:

- $P₁$ aldo
- T: whereiswaldo

Forward-searching:

 \bullet w does not occur in P . \Rightarrow shift pattern past w.

Reverse-searching:

 \bullet r does not occur in P .

 \Rightarrow shift pattern past r.

- $P₁$ aldo
- $T:$ whereiswaldo

Forward-searching:

- \bullet w does not occur in P . \Rightarrow shift pattern past w.
- h does not occur in P. \Rightarrow shift pattern past h.

Reverse-searching:

- \bullet r does not occur in P .
	- \Rightarrow shift pattern past r.
- \bullet w does not occur in P . \Rightarrow shift pattern past w.

- $P₁$ aldo
- $T:$ whereiswaldo

Forward-searching:

- \bullet w does not occur in P . \Rightarrow shift pattern past w.
- h does not occur in P. \Rightarrow shift pattern past h.

With forward-searching, fewer guesses are ruled out.

Reverse-searching:

- r does not occur in P.
	- \Rightarrow shift pattern past r.
- \bullet w does not occur in P . \Rightarrow shift pattern past w.

This bad character heuristic works well with reverse-searching.

 $P: p a p e r$

r

P: p a p e r

 (1) Mismatched character in the text is a

r [a]

- $P: p a p e r$
- T : f e e d **a** l l p o o r p a r r o t s

 (1) Mismatched character in the text is a Shift the guess until a in P aligns with a in T

 \blacktriangleright All skipped guessed are impossible since they do not match a

r

- $P: p a p e r$
- T : f e e d a l l **p** o o r p a r r o t s

[p] (1) Mismatched character in the text is a

Shift the guess until a in P aligns with a in T

 $|a||$ $|r$

- \blacktriangleright All skipped guessed are impossible since they do not match a
- (2) Shift the guess until *last* p in P aligns with p in T
	- \triangleright Use "last" since we cannot rule out this guess.

r

- $P:$ p a p e r
- T : f e e d a l l p o **o** r p a r r o t s

 $|a||$ $|r$ $[p]$ r

- (1) Mismatched character in the text is a Shift the guess until a in P aligns with a in T
	- \triangleright All skipped guessed are impossible since they do not match a
- (2) Shift the guess until *last* p in P aligns with p in T
	- \triangleright Use "last" since we cannot rule out this guess.
- (3) As before, shift completely past o since o is not in P.

- $P: p a p e r$
- T : f e e d a l l p o o r p a **r** r o t s

r $|a||$ $|r$ $[p]$ r e | r

- (1) Mismatched character in the text is a Shift the guess until a in P aligns with a in T
	- \triangleright All skipped guessed are impossible since they do not match a
- (2) Shift the guess until *last* p in P aligns with p in T
	- \triangleright Use "last" since we cannot rule out this guess.
- (3) As before, shift completely past o since o is not in P.
- (4) The shift that aligns with r has already been ruled out.
	- \triangleright Bad character heuristic not helpful, shift guess right by one unit.

Bad character heuristic details
 $P: \mathbf{p} \quad \mathbf{a} \quad \mathbf{p} \quad \mathbf{e} \quad \mathbf{r}$

- a p e r
- T : f e e d a l l p o o r p a r r **o** t s

r [a] r $[p]$ r e | r r

- (1) Mismatched character in the text is a Shift the guess until a in P aligns with a in T
	- \triangleright All skipped guessed are impossible since they do not match a
- (2) Shift the guess until *last* p in P aligns with p in T
	- \triangleright Use "last" since we cannot rule out this guess.
- (3) As before, shift completely past o since o is not in P.
- (4) The shift that aligns with r has already been ruled out.
	- \triangleright Bad character heuristic not helpful, shift guess right by one unit.
- (5) Shift completely past $o \rightarrow out$ of bounds.

M. Petrick, É. Schost (CS-UW) [CS240 – Module 9](#page-0-0) Spring 2024 25 / 44

Boyer-Moore Algorithm – incomplete

```
Boyer-Moore::pattern-matching(T, P)
1. i \leftarrow m-1, \quad j \leftarrow m-12. while i < n and i > 0 do
        // current guess begins at index i - j3. if T[i] = P[j]4. i \leftarrow i - 1 // go backwards
5. j \leftarrow j - 16. else
7. i \leftarrow ???8. j \leftarrow m - 1 // restart from right end
9. if j = -1 return "found at T[i+1..i+m]"
10. else return FAIL
```
Two steps missing:

- Need to pre-compute for all characters where they are in P.
- \bullet Need to determine how to do the update *i* at a mismatch.

Helper-Array for Bad Character Heuristic

- Build the helper-array L mapping Σ to integers
- $L[c]$ is the largest index *i* such that $P[i] = c$

Helper-Array for Bad Character Heuristic

- Build the helper-array L mapping Σ to integers
- L[c] is the largest index *i* such that $P[i] = c$

- What value should be used if c not in P?
	- \triangleright We want to shift past c entirely.
	- \blacktriangleright Equivalently view this as 'c is to the left of P'
	- **►** Equivalently: c is at $P[-1]$, so set $L[c] = -1$

Helper-Array for Bad Character Heuristic

- Build the helper-array L mapping Σ to integers
- L[c] is the largest index *i* such that $P[i] = c$

• What value should be used if c not in P?

- \triangleright We want to shift past c entirely.
- \blacktriangleright Equivalently view this as 'c is to the left of P'
- **►** Equivalently: c is at $P[-1]$, so set $L[c] = -1$
- We can build this in time $O(m + |\Sigma|)$ with simple for-loop

BoyerMoore::bad-character-helper-array(P[0*..*m−1]) 1. initialize array L indexed by Σ with all -1 **for** j \leftarrow 0 **to** $m-1$ **do** $L[P[j]]$ \leftarrow j 3. **return** L

"Good" case: $L[c] < j$, so c is left of $P[j]$. text: c i old pattern: | | c $L[c]$ old c Want: $i^{\text{new}} = \text{index in } T$ that corresponds to j^{new} .

"Good" case: $L[c] < j$, so c is left of P[j].

"Good" case: $L[c] < j$, so c is left of P[j].

"Good" case: $L[c] < i$, so c is left of P[j].

"Good" case: $L[c] < i$, so c is left of P[j].

Can show: The same formula also holds for the other cases.

M. Petrick, É. Schost (CS-UW) and [CS240 – Module 9](#page-0-0) Spring 2024 28 / 44

Boyer-Moore Algorithm

Boyer-Moore::pattern-matching(T*,* P) // simplified version 1. $L \leftarrow$ bad-character-helper-array(P) 2. $i \leftarrow m-1, \quad i \leftarrow m-1$ 3. **while** $i < n$ and $j > 0$ do 4. **if** $T[i] = P[i]$ 5. $i \leftarrow i - 1$ 6. $j \leftarrow j - 1$ 7. **else** 8. $i \leftarrow i + m-1 - \min\{L[T[i]], j-1\}$ 9. $j \leftarrow m-1$ 10. **if** $j = -1$ **return** "found at $T[i+1..i+m]$ " 11. **else return** FAIL

For full Boyer-Moore algorithm:

- **•** precompuate helper-array G for good-suffix heuristic from P
- **•** update-formula becomes $i \leftarrow i + m-1 \min\{L[T[i]], G[i]\}$

Doing examples is easy, but computing G is complicated (no details). P : G C G C T A G C T : G C G C T G G C C A G C G C T A G C $A \mid G \mid C$

Summary:

- Boyer-Moore performs very well (even without good suffix heuristic).
- \bullet On typical *English text* Boyer-Moore looks at only ≈ 25% of T
- Worst-case run-time for is $O(mn)$, but in practice much faster. [There are ways to ensure $O(n)$ run-time. No details.]

Outline

[String Matching](#page-2-0)

- [Introduction](#page-2-0)
- [Karp-Rabin Algorithm](#page-10-0)
- **[String Matching with Finite Automata](#page-15-0)**
- [Knuth-Morris-Pratt algorithm](#page-20-0)
- [Boyer-Moore Algorithm](#page-39-0)
- **•** [Suffix Trees](#page-68-0)
- [Suffix Arrays](#page-80-0)
- **[Conclusion](#page-91-0)**

Tries of Suffixes and Suffix Trees

Recall: P occurs in $T \Leftrightarrow P$ is a prefix of some suffix of T.

Idea: Build a data structure that stores all suffixes of T.

- \triangleright So we preprocess the text T rather than the pattern P
- \triangleright This is useful if we want to search for many patterns P within the same fixed text T.
- Naive idea: Store the suffixes in a trie.
	- ► $|T| = n \Rightarrow$ the $n+1$ suffixes together have $\binom{n+1}{2} \in \Theta(n^2)$ characters
	- \blacktriangleright This wastes space

Tries of Suffixes and Suffix Trees

Recall: P occurs in $T \Leftrightarrow P$ is a prefix of some suffix of T.

Idea: Build a data structure that stores all suffixes of T.

- \triangleright So we preprocess the text T rather than the pattern P
- \triangleright This is useful if we want to search for many patterns P within the same fixed text T.
- Naive idea: Store the suffixes in a trie.
	- ► $|T| = n \Rightarrow$ the $n+1$ suffixes together have $\binom{n+1}{2} \in \Theta(n^2)$ characters
	- \blacktriangleright This wastes space
- **Suffix tree** saves space in multiple ways:
	- \triangleright Store suffixes implicitly via indices into T.
	- ▶ Use a compressed trie.
	- \blacktriangleright Then the space is $O(n)$ since we store $n+1$ words.

Trie of suffixes: Example

 $T =$ bananaban has suffixes

{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

Tries of suffixes

Suffix tree

Suffix tree: Compressed trie of suffixes where leaves store indices.

M. Petrick, É. Schost (CS-UW) [CS240 – Module 9](#page-0-0) Spring 2024 34 / 44

More on Suffix Trees

Pattern Matching:

- \bullet prefix-search for P in compressed trie.
- \bullet This returns longest word with prefix P , hence leftmost occurrence.
- Run-time: $O(|\Sigma|m)$.

Building:

- Text T has n characters and $n + 1$ suffixes
- We can build the suffix tree by inserting each suffix of T into a compressed trie. This takes time $\Theta(|\Sigma|n^2)$.
- There is a way to build a suffix tree of T in $\Theta(|\Sigma|n)$ time. This is quite complicated and beyond the scope of the course.

Summary: Theoretically good, but construction is slow or complicated, and lots of space-overhead \rightsquigarrow rarely used.

If 'no such child' before we reach end of P : FAIL

If we reach node z at end of P: Compare P to z*.*leaf.

If we reach node z at end of P: Compare P to z*.*leaf.

If we reach node z at end of P: Compare P to z*.*leaf.

Outline

[String Matching](#page-2-0)

- [Introduction](#page-2-0)
- [Karp-Rabin Algorithm](#page-10-0)
- **[String Matching with Finite Automata](#page-15-0)**
- [Knuth-Morris-Pratt algorithm](#page-20-0)
- [Boyer-Moore Algorithm](#page-39-0) \bullet
- **[Suffix Trees](#page-68-0)**

[Suffix Arrays](#page-80-0)

[Conclusion](#page-91-0)

Suffix Arrays

- Relatively recent development (popularized in the 1990s)
- Sacrifice some performance for simplicity:
	- \triangleright Slightly slower (by a log-factor) than suffix trees.
	- ▶ Much easier to build.
	- \blacktriangleright Much simpler pattern matching.
	- ▶ Very little space; only one array.

Idea:

- Store suffixes implicitly (by storing start-indices)
- Store *sorting permutation* of the suffixes of T.

Suffix Array Example

sort lexicographically

Suffix array

We do not store the suffixes, but they are easy to retrieve if needed.

Suffix Array Construction

- Easy to construct using *MSD-Radix-Sort*.
	- \triangleright Pad suffixes with trailing \$ to achieve equal length.
	- \blacktriangleright Fast in practice; suffixes are unlikely to share many leading characters.
	- ► But worst-case run-time is $\Theta(n^2)$
		- \star n rounds of recursions (have n chars)
		- \star Each round takes $\Theta(n)$ time (bucket-sort)

Suffix Array Construction

- Easy to construct using MSD-Radix-Sort.
	- \triangleright Pad suffixes with trailing \$ to achieve equal length.
	- \blacktriangleright Fast in practice; suffixes are unlikely to share many leading characters.
	- ► But worst-case run-time is $\Theta(n^2)$
		- \star *n* rounds of recursions (have *n* chars)
		- \star Each round takes $\Theta(n)$ time (bucket-sort)
- **a** Idea: We do not need *n* rounds!

 $\sqrt{ }$ \mathcal{L}

- ▶ Consider sub-array after one round.
- ▶ These have same leading char. Ties are broken by rest of words.
- ▶ But rest of words are also suffixes $→$ sorted elsewhere
- ▶ We can double length of sorted part every round.
- ▶ O(log n) rounds enough ⇒ O(n log n) **run-time**
- ▶ You do not need to know details (\rightsquigarrow cs482).
- Construction-algorithm: MSD-radix-sort plus some bookkeeping
	- \triangleright A bit complicated to explain but easy to implement

 \setminus $\overline{1}$

- Suffix array stores suffixes (implicitly) in sorted order.
- **Idea:** apply binary search!

- Suffix array stores suffixes (implicitly) in sorted order.
- **Idea:** apply binary search!

 $P =$ ban:

- Suffix array stores suffixes (implicitly) in sorted order.
- **Idea:** apply binary search!

 $P =$ ban:

- Suffix array stores suffixes (implicitly) in sorted order.
- **Idea:** apply binary search!

 $P =$ ban:

- \odot $O(log n)$ comparisons.
- Each comparison is a $strncmp$ of P with a suffix
- \odot O(*m*) time per comparison \Rightarrow **run-time** O(*m* log *n*)

SuffixArray::pattern-matching(T*,* P*,* A suffix) 1. $\ell \leftarrow 0$, $r \leftarrow$ last index of A^{suffix} 2. **while** $(\ell \le r)$ 3. $\nu \leftarrow \left\lfloor \frac{\ell+r}{2} \right\rfloor$ 4. $g \leftarrow A^{\text{suffix}}[\nu]$ // suffix of middle index begins at $\mathcal{T}[g]$ 5. $s \leftarrow \text{strncmp}(T, P, g, m)$ // Case $g + m > n$ is handled correctly if T has end-sentinel 6. **if** $(s < 0)$ **do** $\ell \leftarrow \nu + 1$ 7. **else if** $(s > 0)$ **do** $r \leftarrow \nu - 1$ 8. **else return** "found at guess g" 9. **return** FAIL

- Does not always return leftmost occurrence.
- Can find leftmost occurrence (and reduce run-time to $O(m + \log n)$) with further pre-computations (no details).

M. Petrick, É. Schost (CS-UW) [CS240 – Module 9](#page-0-0) Spring 2024 43 / 44

Outline

[String Matching](#page-2-0)

- [Introduction](#page-2-0)
- [Karp-Rabin Algorithm](#page-10-0)
- **[String Matching with Finite Automata](#page-15-0)**
- [Knuth-Morris-Pratt algorithm](#page-20-0)
- [Boyer-Moore Algorithm](#page-39-0) \bullet
- **[Suffix Trees](#page-68-0)**
- [Suffix Arrays](#page-80-0)
- **[Conclusion](#page-91-0)**

String Matching Conclusion

(Some additive |Σ|-terms are not shown.)

- Our algorithms stopped once they have found one occurrence.
- Most of them can be adapted to find all occurrences within the same worst-case run-time.