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Pattern Matching Introduction
Search for a string (pattern) in a large body of text. Useful for

▶ Information Retrieval (text editors, search engines)
▶ Bioinformatics
▶ Data Mining

T [0..n − 1] – The text (or haystack) being searched within

Example: T = “Where is he?”

P[0..m − 1] – The pattern (or needle) being searched for

Example: P1 = “he” P2 = “who”

occurrence: index i such that T [i ..i+m−1] = P, i.e.,

P[j] = T [i + j] for 0 ≤ j ≤ m − 1

Convention: return smallest such i (leftmost occurrence)
If P does not occur in T , return FAIL
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Pattern Matching Observation
Recall:

Substring T [i ..j] for 0 ≤ i ≤ j+1 ≤ n: a string of length j − i + 1
which consists of characters T [i ], . . . T [j] in order.
Prefix of T : a substring T [0..i−1] of T for some 0 ≤ i ≤ n.
Suffix of T : a substring T [i ..n−1] of T for some 0 ≤ i ≤ n.
The empty string Λ is also considered a substring, prefix and suffix.

Observe: P occurs in T
⇔ P is a substring of T .
⇔ P is a suffix of some prefix of T .
⇔ P is a prefix of some suffix of T .

✓ ✓ ✓ ✓

prefix of T
suffix of prefix of T

prefix of suffix of T
suffix of T
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General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:
A guess is a position g such that P might start at T [i ].
Valid guesses (initially) are 0 ≤ g ≤ n −m.
A check of a guess is a single position j with 0 ≤ j < m where we
compare T [g + j] to P[j].
We do strncmp to compare a guess to P. This uses m checks in the
worst-case, but may use (many) fewer checks if there is a mismatch.

We will diagram a single run of any pattern matching algorithm by a
matrix of checks, where each row represents a single guess (shaded gray).

a b b b a b a b b a b
a b b a

a
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Brute-force Algorithm
Idea: Check every possible guess.

Bruteforce::pattern-matching(T [0..n − 1], P[0..m − 1])
T : String of length n (text), P: String of length m (pattern)
1. for g ← 0 to n −m do // g: index of guess
2. if strncmp(T , P, g , m) = 0
3. return “found at guess g”
4. return FAIL

Note: strncmp takes Θ(m) time.

strncmp(T , P, g ← 0, m))
// Compare m chars of T and P, starting at T [g ]
1. for j ← 0 to m − 1 do
2. if T [g + j] is before P[j] in Σ then return -1
3. if T [g + j] is after P[j] in Σ then return 1
4. return 0
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Brute-Force Example

Example: T = abbbababbab, P = abba
a b b b a b a b b a b
a b b a

a
a

a
a b b

a
a b b a

What is the worst possible input?

P = am−1b, T = an

Worst case performance Θ((n −m + 1) ·m)
This is too slow (quadratic if m ≈ n/2).
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How to improve?

General idea of preprocessing: Do work on some parts of input
beforehand, so that the actual query (with rest of input) then goes faster.

For pattern matching, we have two options:
Do preprocessing on the pattern P

▶ We eliminate guesses based on characters we have seen.
Do preprocessing on the text T

▶ We create a data structure to find matches easily.

Pre-process

Pre-process P

Karp-Rabin NFA/DFA Knuth-Morris-Pratt Boyer-Moore

Pre-process T

Suffix tree Suffix array
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Karp-Rabin Fingerprint Algorithm – Idea
Idea: Use fingerprints to eliminate guesses

Need function h : {strings of length m} → {0, . . . , M−1}
(Call these ‘hash-function’ and ‘table-size’, but there is no dictionary here)

Insight: If h(P) ̸= h( T [g ..g+m−1]) then guess g cannot work

Example: Σ = {0−9}, P = 9 2 6 5 3, T = 3 1 4 1 5 9 2 6 5 3 5
Use standard hash-function for words, with R = |Σ| and M = 97:

h(x0 . . . x4) =
(
x0x1x2x3x4

)
10 mod 97

Pre-compute h(P) = 92653 mod 97 = 18.

3 1 4 1 5 9 2 6 5 3 5
fingerprint 84 no strncmp needed

fingerprint 94 no strncmp needed
fingerprint 76 no strncmp needed

fingerprint 18 do strncmp, false positive
fingerprint 95 no strncmp needed

fingerprint 18 do strncmp, found
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Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::pattern-matching(T , P)
1. hP ← h(P[0..m−1)])
2. for g ← 0 to n −m
3. hT ← h(T [g ..g+m−1]) // not constant time
4. if hT = hP
5. if strncmp(T , P, g , m) = 0
6. return “found at guess g”
7. return FAIL

Never misses a match: h(T [g ..g+m−1]) ̸= h(P)⇒ guess g is not P
h(T [g ..g+m−1]) depends on m characters, so naive computation
takes Θ(m) time per guess
Running time is Θ(mn) if P is not in T . Can we improve this?
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Karp-Rabin Fingerprint Algorithm – Fast Update
Idea: Consecutive guesses share m−1 characters
⇒ for suitable hash-functions, can compute next fingerprint from previous

Example: 15926 = (41592− 4 · 10 000) · 10 + 6

15926 mod 97︸ ︷︷ ︸
h(15926)

=
(

( 41592 mod 97︸ ︷︷ ︸
previous fingerprint

−4 · 10000 mod 97︸ ︷︷ ︸
9 (pre-computed)

)
·10+6) mod 97

=
(
(76− 4 · 9) · 10 + 6

)
mod 97 = 18

So pre-compute Rm−1 mod M (here 10000 mod 97 = 9)
Compute leftmost fingerprint
Use previous fingerprint to compute next fingerprint in O(1) time
Run-time: O(m + n + m ·#{false positives})
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Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin::pattern-matching(T , P) // rolling hash-function
1. M ← suitable prime number
2. hP ← h(P[0..m−1)])
3. s ← Rm−1 mod M
4. hT ← h(T [0..m−1)])
5. for g ← 0 to n −m
6. if hT = hP
7. if strncmp(T , P, g , m) = 0 return “found at guess g”
8. if g < n −m // compute fingerprint for next guess
9. hT ← ((hT − T [g ] · s) · R + T [g+m]) mod M
10. return “FAIL”

Choose “table size” M to be random prime in {2, . . . , mn2}
Can show: Then P(at least one false positive) ∈ O( 1

n )
Expected time O(m+n), worst-luck time O(m·n) (extremely unlikely)
Improvement: reset M after a false positive

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 11 / 44



Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024



String Matching with Finite Automata
Example: Automaton for the pattern P = ababaca

0 1 2 3 4 5 6 7
a

{a, b, c}

b a b a c a

Σ

 You should be familiar with:
finite automaton, DFA, NFA, converting NFA to DFA
transition function, states, start state, accepting states



This is a Non-deterministic Finite Automaton
Forward-arc j −→ j+1 labelled with P[j]
State j expresses “we have j leftmost characters of P’
NFA accepts T if and only if T contains P

But evaluating NFAs is very slow.
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String matching with DFA
Can show: There exists an equivalent Deterministic Finite Automaton:

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

Same states, forward-arcs, start state, accepting states.
Easy to test whether P is in T .
But how do we find the backward-arcs?

(We will not give the details of this since there is an even better automaton.)
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Knuth-Morris-Pratt Motivation

0 1 2 3 4 5 6 7
a

Σ− a

b

×

a

×

b

×

a

×

c

×

a

×

Σ

Same states, forward-arcs, start state, accepting states.
Use a new type of transition × (“failure”) but stay deterministic:

▶ One per state 1, . . . , m−1 , use it only if no other transition fits.
▶ Does not consume a character.

We will (later) determine failure-arcs such that the automaton
accepts T if and only if T contains ababaca

Store the failure-arcs in an array F [0..m−1] (index off by one!):
j 0 1 2 3 4 5 6

failure arc from j to NA 0 0 1 2 3 0
F [j] 0 0 1 2 3 0 ?
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Knuth-Morris-Pratt Algorithm
There is no need to build an automaton; ‘parsing’ can be described with
variables and failure-array F .

KMP::pattern-matching(T , P)
1. F ← compute-failure-array(P)
2. i ← 0 // character of T to parse
3. j ← 0 // current state
4. while i < n do
5. // inv: P[0..j−1] is a suffix of T [0..i−1]
6. if P[j] = T [i ]
7. if j = m − 1 then return “found at guess i −m + 1”
8. else // forward-arc
9. i ← i + 1
10. j ← j + 1
11. else // next character is mismatch
12. if j > 0 then j ← F [j − 1] // failure-arc
13. else i ← i + 1 // loop at 0
14. return FAIL
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String matching with KMP – Example
Example: T = ababababaca, P = ababaca

0 1 2 3 4 5 6 7
a

Σ− a

b

×

a

×

b

×

a

×

c

×

a

×

Σ

T : a b a b a b b c a b a b a c a
a b a b a ×

(a) (b) (a) b ×
(a) (b) ×

×
×

a b a b a c a

state: 1 2 3 4 5 3, 4 2, 0 0 1 2 3 4 5 6 7
(after reading this character)
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String matching with KMP – Failure-function
Assume that we reach a mismatch (say at guess g):

T :

g

P:

next guess: ? ? ? ?

next guess: ? ? ?

next guess: ? ?

Consider guesses at index g+1, g+2, . . . . Could they match?
The matched characters will rule out many of these guesses.
We want the leftmost guess that cannot be ruled out.

Note: This depends only on P, and not on T .
In particular it can be pre-computed .
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String matching with KMP – Failure-function
Consider again the example P = ababaca.

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): (a) b a b a c a

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): (a)(b) a b a c a

P: a b a b a c a

P (shifted): (a)(b)(a) b a c a

Sometimes nothing fits. Then shift past matched part.

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): a b a b a c a

P:
0 1 2 3 4 5 6

a b a b a c a

P (shifted): a b a b a c a

P: a b a b a c a

P (shifted): a b a b a c a

Store in F [·] how many characters are matched in new shift.
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String matching with KMP – Failure function
Definition: F [j] = number of re-used characters if P[0..j] matched
For P = ababaca, we get j 0 1 2 3 4 5 6

F [j] 0 0 1 2 3 0 ?
(This matches exactly the failure-arcs in KMP-automaton.)

In general: We must find a long prefix of P that is a suffix of P[0..j]
(except it should not be all of P[0..j])

P:
0 1 . . . j

next guess: ? ? ? ?

next guess: ? ? ?

next guess: ? ?

Equivalently: We must find a long prefix of P that is a suffix of P[1..j]

Result: F [j] = length of the longest prefix of P that is a suffix of P[1..j].
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KMP Failure Array – Easy Computation
F [j] = length of the longest prefix of P that is a suffix of P[1..j].

Write down all prefixes (including empty word Λ).
Then for j ∈ {0, . . . , m−1} and each prefix of P

check whether the prefix is a suffix of P[1..j].

j P[1..j] Prefixes of P longest F [j]
0 Λ Λ, a, ab, aba, abab, ababa, . . . Λ 0
1 b Λ, a, ab, aba, abab, ababa, . . . Λ 0
2 ba Λ, a, ab, aba, abab, ababa, . . . a 1
3 bab Λ, a, ab, aba, abab, ababa, . . . ab 2
4 baba Λ, a, ab, aba, abab, ababa, . . . aba 3
5 babac Λ, a, ab, aba, abab, ababa, . . . Λ 0
6 babaca Λ, a, ab, aba, abab, ababa, . . . a 1

(F [m−1] is not needed for KMP automaton, but useful elsewhere)

This can clearly be computed in O(m3) time, but we can do better!
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KMP Failure Array – Fast Computation
F [q−1] is maximum ℓ such that P[0..ℓ−1] is a suffix of P[1..q−1].

(For easier comparison, we have substituted q ← j + 1.)

Idea: This is same as loop-invariant for KMP if we parse P[1..q−1].

KMP::compute-failure-array(P)
1. Initialize array F as all-0
2. q ← 1 // index of P[1..m−1] to parse
3. ℓ← 0 // current state
4. while j < m do
5. // inv: P[0..ℓ−1] equals last ℓ characters of P[1..q−1]
6. F [q − 1]← max{F [q − 1], ℓ}
7. if P[q] = P[ℓ]
8. ℓ← ℓ + 1
9. q ← q + 1
10. else if ℓ > 0 then ℓ← F [ℓ− 1]
11. else q ← q + 1
12. F [m − 1]← ℓ

Note: ℓ < q at all times, so needed failure-arcs are already computed.
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KMP Runtime

Parsing text T with |T | = n:
Run-time is proportional to the number of arcs followed.
Every loop and forward-arc consumes a character of T .
So this happens at most n times
For every failure-arc (leads left) there was a forward-arc that we
followed earlier ⇝ happens at most n times

So the main routine (without compute-failure-array) takes O(n) time.

compute-failure-array parses a text of length m−1 ⇝ O(m) time.

Result: Pattern matching with Knuth-Morris-Pratt has O(n + m)
worst-case run-time.

But we can do even better!
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But we can do even better!

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 22 / 44



Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024



Towards the Boyer-Moore Algorithm
Recall: KMP eliminates guesses based on matched part of P.

text:
i

pattern:
j

Boyer-Moore exploits two insights:
Eliminate guesses based on matched part of P.
(good suffix heuristic)—very similar to KMP.
Eliminate guesses based on mismatched characters of T
(bad character jumps)—this is new.

The second insight turns out to be very helpful, and leads to fastest
pattern matching on English text as long as we search backwards.

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 23 / 44



Towards the Boyer-Moore Algorithm
Recall: KMP eliminates guesses based on matched part of P.

text:
i

pattern:
j

Boyer-Moore exploits two insights:
Eliminate guesses based on matched part of P.
(good suffix heuristic)—very similar to KMP.
Eliminate guesses based on mismatched characters of T
(bad character jumps)—this is new.

The second insight turns out to be very helpful, and leads to fastest
pattern matching on English text as long as we search backwards.

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 23 / 44



Towards the Boyer-Moore Algorithm
Recall: KMP eliminates guesses based on matched part of P.

text:
i

pattern:
j

Boyer-Moore exploits two insights:
Eliminate guesses based on matched part of P.
(good suffix heuristic)—very similar to KMP.
Eliminate guesses based on mismatched characters of T
(bad character jumps)—this is new.

The second insight turns out to be very helpful, and leads to fastest
pattern matching on English text as long as we search backwards.

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 23 / 44



Forward-searching vs. reverse-searching

P: aldo
T : whereiswaldo

Forward-searching:
w h e r e i s w a l d o

a
a

a

w does not occur in P.
⇒ shift pattern past w.
h does not occur in P.
⇒ shift pattern past h.

With forward-searching, fewer
guesses are ruled out.

Reverse-searching:
w h e r e i s w a l d o

o
o

a l d o

r does not occur in P.
⇒ shift pattern past r.
w does not occur in P.
⇒ shift pattern past w.

This bad character heuristic works
well with reverse-searching.
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Bad character heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
[a] r

[p] r
e r

r
(1) Mismatched character in the text is a

Shift the guess until a in P aligns with a in T

▶ All skipped guessed are impossible since they do not match a

(2) Shift the guess until last p in P aligns with p in T
▶ Use “last” since we cannot rule out this guess.

(3) As before, shift completely past o since o is not in P.

(4) The shift that aligns with r has already been ruled out.
▶ Bad character heuristic not helpful, shift guess right by one unit.

(5) Shift completely past o → out of bounds.
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Boyer-Moore Algorithm – incomplete

Boyer-Moore::pattern-matching(T , P)
1. i ← m − 1, j ← m − 1
2. while i < n and j ≥ 0 do

// current guess begins at index i − j
3. if T [i ] = P[j]
4. i ← i − 1 // go backwards
5. j ← j − 1
6. else
7. i ← ???
8. j ← m − 1 // restart from right end
9. if j = −1 return “found at T [i+1..i+m]”
10. else return FAIL

Two steps missing:
Need to pre-compute for all characters where they are in P.
Need to determine how to do the update i at a mismatch.
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Helper-Array for Bad Character Heuristic
Build the helper-array L mapping Σ to integers
L[c] is the largest index i such that P[i ] = c

Pattern:
0 1 2 3 4
p a p e r

Helper-array:
char p a e r all others
L[·] 2 1 3 4 ?

What value should be used if c not in P?
▶ We want to shift past c entirely.
▶ Equivalently view this as ‘c is to the left of P’
▶ Equivalently: c is at P[−1], so set L[c] = −1

We can build this in time O(m + |Σ|) with simple for-loop
BoyerMoore::bad-character-helper-array(P[0..m−1])
1. initialize array L indexed by Σ with all −1
2. for j ← 0 to m−1 do L[P[j]]← j
3. return L
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Bad character heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold

inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c

jnew

Want: inew = index in T that corresponds to jnew.

∆1 = amount that we should shift = jold − L[c]
∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}
Can show: The same formula also holds for the other cases.

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 28 / 44



Bad character heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold

inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

Want: inew = index in T that corresponds to jnew.
∆1 = amount that we should shift = jold − L[c]

∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}
Can show: The same formula also holds for the other cases.

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 28 / 44



Bad character heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

Want: inew = index in T that corresponds to jnew.
∆1 = amount that we should shift = jold − L[c]
∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}
Can show: The same formula also holds for the other cases.

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 28 / 44



Bad character heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold inew

pattern: c
L[c] jold

∆1 ∆1

∆2
m−1

c
jnew

Want: inew = index in T that corresponds to jnew.
∆1 = amount that we should shift = jold − L[c]
∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}

Can show: The same formula also holds for the other cases.

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 28 / 44



Bad character heuristic – update formula

“Good” case: L[c] < j , so c is left of P[j].

text: c
iold inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

Want: inew = index in T that corresponds to jnew.
∆1 = amount that we should shift = jold − L[c]
∆2 = how much we had compared = (m−1)− jold

inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
= iold + (m−1)−min

{
L[c], jold−1

}
Can show: The same formula also holds for the other cases.

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 28 / 44



Boyer-Moore Algorithm

Boyer-Moore::pattern-matching(T , P) // simplified version
1. L← bad-character-helper-array(P)
2. i ← m − 1, j ← m − 1
3. while i < n and j ≥ 0 do
4. if T [i ] = P[j]
5. i ← i − 1
6. j ← j − 1
7. else
8. i ← i + m−1−min{L[T [i ]], j−1}
9. j ← m − 1
10. if j = −1 return “found at T [i+1..i+m]”
11. else return FAIL

For full Boyer-Moore algorithm:
precompuate helper-array G for good-suffix heuristic from P
update-formula becomes i ← i + m−1−min{L[T [i ]], G [j]}
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Good Suffix Heuristic
Doing examples is easy, but computing G is complicated (no details).
P : G C G C T A G C
T : G C G C T G G C C A G C G C T A G C

A G C

Do smallest shift so that matched text GC fits the new guess.
(G) (C) T A G C

Sometimes only part of matched text AGC fits.
(G) (C)

Summary:
Boyer-Moore performs very well (even without good suffix heuristic).
On typical English text Boyer-Moore looks at only ≈ 25% of T
Worst-case run-time for is O(mn), but in practice much faster.
[There are ways to ensure O(n) run-time. No details.]
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Tries of Suffixes and Suffix Trees
Recall: P occurs in T ⇔ P is a prefix of some suffix of T .

✓ ✓ ✓ ✓
prefix of suffix of T

suffix of T

Idea: Build a data structure that stores all suffixes of T .
▶ So we preprocess the text T rather than the pattern P
▶ This is useful if we want to search for many patterns P within the same

fixed text T .
Naive idea: Store the suffixes in a trie.

▶ |T | = n⇒ the n+1 suffixes together have
(n+1

2
)
∈ Θ(n2) characters

▶ This wastes space

Suffix tree saves space in multiple ways:
▶ Store suffixes implicitly via indices into T .
▶ Use a compressed trie.
▶ Then the space is O(n) since we store n+1 words.
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Trie of suffixes: Example
T = bananaban has suffixes
{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

$

$

aban$
$na

b
an$$

anaban$
$na

b

ananaban$
$naba

n
a

n

a

ban$$

bananaban$
$naban

a
na

b

n$$
naban$

$na
b

nanaban$
$naba

n
a

n

(not all leaf-references shown)
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Tries of suffixes
Store suffixes via indices:

0 1 2 3 4 5 6 7 8 9
T = b a n a n a b a n $

T[9..9]

$

T[5..9]
$na

b
T[7..9]$

T[3..9]
$na

b

T[1..9]
$naba

n
a

n

a

T[6..9]$

T[0..9]
$naban

a
na

b

T[8..9]$
T[4..9]

$na
b

T[2..9]
$naba

n
a

n
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Suffix tree
Suffix tree: Compressed trie of suffixes where leaves store indices.

0 1 2 3 4 5 6 7 8 9
T = b a n a n a b a n $

0

T[9..9]

$ 1
T[5..9]b

2
T[7..9]$

3
T[3..9]b

T[1..9]
n

a
n

a

3
T[6..9]$

T[0..9]
a

b

1
T[8..9]$

2
T[4..9]b

T[2..9]
n

a

n
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More on Suffix Trees

Pattern Matching:
prefix-search for P in compressed trie.
This returns longest word with prefix P, hence leftmost occurrence.
Run-time: O(|Σ|m).

Building:
Text T has n characters and n + 1 suffixes
We can build the suffix tree by inserting each suffix of T into a
compressed trie. This takes time Θ(|Σ|n2).
There is a way to build a suffix tree of T in Θ(|Σ|n) time.
This is quite complicated and beyond the scope of the course.

Summary: Theoretically good, but construction is slow or complicated,
and lots of space-overhead ⇝ rarely used.
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Pattern Matching in Suffix Tree: Example 1
0 1 2 3 4 5 6 7 8 9

T = b a n a n a b a n $
0 1 2

P = a n n

0

T[9..9]

$ 1
T[5..9]b

2

T[7..9]
$

3
T[3..9]b

T[1..9]
na

no such child

n

n

a

3
T[6..9]$

T[0..9]
a

b

1
T[8..9]$

2
T[4..9]b

T[2..9]
n

a

n

If ‘no such child’ before we reach end of P: FAIL
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Pattern Matching in Suffix Tree: Example 2
0 1 2 3 4 5 6 7 8 9

T = b a n a n a b a n $
0 1

P = b e

0

T[9..9]

$ 1
T[5..9]b

2
T[7..9]$

3
T[3..9]b

T[1..9]
n

a
n

a

3
z T[6..9]$

T[0..9]a

b

1
T[8..9]$

2
T[4..9]b

T[2..9]
n

a

n

If we reach node z at end of P: Compare P to z .leaf.
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Suffix Arrays

Relatively recent development (popularized in the 1990s)
Sacrifice some performance for simplicity:

▶ Slightly slower (by a log-factor) than suffix trees.
▶ Much easier to build.
▶ Much simpler pattern matching.
▶ Very little space; only one array.

Idea:
Store suffixes implicitly (by storing start-indices)
Store sorting permutation of the suffixes of T .
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Suffix Array Example

0 1 2 3 4 5 6 7 8
Text T : b a n a n a b a n

i suffix T [i ..n]
0 bananaban$
1 ananaban$
2 nanaban$
3 anaban$
4 naban$
5 aban$
6 ban$
7 an$
8 n$
9 $

−→
sort lexicographically

j Asuffix[j]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$
9 2 nanaban$
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Suffix array

Asuffix

0 9
1 5
2 7
3 3
4 1
5 6
6 0
7 8
8 4
9 2

$
a n $

a b a n $
a n a b a n $

a n a n a b a n $
b a n $

b a n a n a b a n $
n $

n a b a n $
n a n a b a n $

0 1 2 3 4 5 6 7 8 9

T : b a n a n a b a n $

We do not store the suffixes, but they are easy to retrieve if needed.

M. Petrick, É. Schost (CS-UW) CS240 – Module 9 Spring 2024 40 / 44



Suffix Array Construction

Easy to construct using MSD-Radix-Sort.
▶ Pad suffixes with trailing $ to achieve equal length.
▶ Fast in practice; suffixes are unlikely to share many leading characters.
▶ But worst-case run-time is Θ(n2)

⋆ n rounds of recursions (have n chars)
⋆ Each round takes Θ(n) time (bucket-sort)

Idea: We do not need n rounds! ▶ Consider sub-array after one round.
▶ These have same leading char. Ties are broken by rest of words.
▶ But rest of words are also suffixes ⇝ sorted elsewhere
▶ We can double length of sorted part every round.


▶ O(log n) rounds enough ⇒ O(n log n) run-time
▶ You do not need to know details (⇝ cs482).

Construction-algorithm: MSD-radix-sort plus some bookkeeping
▶ A bit complicated to explain but easy to implement
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Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j Asuffix[j] T [ Asuffix[j]..n−1]

ℓ→ 0 9 $
1 5 aban$
2 7 an$
3 3 anaban$

ν → 4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$

r → 9 2 nanaban$

O(log n) comparisons.
Each comparison is a strncmp of P with a suffix
O(m) time per comparison ⇒ run-time O(m log n)
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P =ban:
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0 9 $
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Pattern matching in suffix arrays

SuffixArray::pattern-matching(T , P, Asuffix)
1. ℓ← 0, r ← last index of Asuffix

2. while (ℓ ≤ r)

3. ν ← ⌊ ℓ+r
2 ⌋

4. g ← Asuffix[ν] // suffix of middle index begins at T [g ]
5. s ← strncmp(T , P, g , m)

// Case g + m > n is handled correctly if T has end-sentinel

6. if (s < 0) do ℓ← ν + 1
7. else if (s > 0) do r ← ν − 1
8. else return “found at guess g”
9. return FAIL

Does not always return leftmost occurrence.
Can find leftmost occurrence (and reduce run-time to O(m + log n))
with further pre-computations (no details).
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String Matching Conclusion
Preprocess P Preprocess T

Brute-
Force

Karp-
Rabin DFA Knuth-

Morris-
Pratt

Boyer-
Moore

Suffix
Tree

Suffix
Array

Preproc. — O(m) O(m|Σ|) O(m) O(m) O(n2|Σ|) O(n log n)
[O(n|Σ|)] [O(n)]

Search
time

O(nm) O(n+m)
expected

O(n) O(n) O(n) or
better

O(m|Σ|) O(m log n)
[O(m + log n)]

Extra — O(1) O(m|Σ|) O(m) O(m) O(n) O(n)space

(Some additive |Σ|-terms are not shown.)

Our algorithms stopped once they have found one occurrence.
Most of them can be adapted to find all occurrences within the same
worst-case run-time.
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