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Direct Addressing
Special situation: For a known M ∈ N, every key k is an integer with
0 ≤ k < M.

We can then implement a dictionary easily: Use an array A of size M that
stores (k, v) via A[k]← v .

0

1

dog2

3

4

5

cat6

7

pig8

search(k): Check whether A[k] is NULL

insert(k, v): A[k]← v
delete(k): A[k]← NULL

Each operation is Θ(1).
Total space is Θ(M).

What sorting algorithm does this remind you of?
Bucket Sort
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Hashing
Two disadvantages of direct addressing:

It cannot be used if the keys are not integers.
It wastes space if M is unknown or n≪ M.

Hashing idea: Map (arbitrary) keys to integers in range {0, . . . , M−1}
(for an integer M of our choice), then use direct addressing.

Details:
Assumption: We know that all keys come from some universe U.
(Typically U = non-negative integers, sometimes |U| finite.)
We pick a table-size M.
We pick a hash function h : U → {0, 1, . . . , M − 1}.
(Commonly used: h(k) = k mod M. We will see other choices later.)
Store dictionary in hash table, i.e., an array T of size M.
An item with key k wants to be stored in slot h(k), i.e., at T [h(k)].
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Hashing example
U = N, M = 11, h(k) = k mod 11.
The hash table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).

0

451

132

3

924

495

6

77

8

9

4310
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Collisions
Generally hash function h is not injective, so many keys can map to
the same integer.

▶ For example, h(46) = 2 = h(13) if h(k) = k mod 11.
We get collisions: we want to insert (k, v) into the table,
but T [h(k)] is already occupied.

There are many strategies to resolve collisions:

multiple items at location
(Chaining)

alternate slots in array
(Open addressing)

many alternate slots
(Probe sequence)

Linear probing . . . Double hashing

one alternate slot
(Cuckoo hashing)
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Hashing with Chaining

Simplest collision-resolution strategy: Each slot stores a bucket containing
0 or more KVPs.

A bucket could be implemented by any dictionary realization (even
another hash table!).
The simplest approach is to use unsorted lists with MTF for buckets.
This is called collision resolution by chaining.

insert(k, v): Add (k, v) to the front of the list at T [h(k)].
search(k): Look for key k in the list at T [h(k)].
Apply MTF-heuristic!
delete(k): Perform a search, then delete from the linked list.

insert takes time O(1).
search and delete have run-time O(1 + length of list at T (h(k))).
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Chaining example
M = 11, h(k) = k mod 11

insert()

h

0

1 45
2 13
3

4 92
5 49
6

7 7
8

9

10 43
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Chaining example
M = 11, h(k) = k mod 11

insert(41)

h(41) = 8

0

1 45
2 13
3
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5 49
6

7 7
8
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Chaining example
M = 11, h(k) = k mod 11
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h(46) = 2
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Chaining example
M = 11, h(k) = k mod 11

insert(16)

h(16) = 5

0

1 45
2 46 13
3

4 92
5 49
6

7 7
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9
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Chaining example
M = 11, h(k) = k mod 11

insert(16)

h(16) = 5

0

1 45
2 46 13
3

4 92
5 16 49
6

7 7
8 41
9

10 43
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Chaining example
M = 11, h(k) = k mod 11

insert(79)

h(79) = 2

0

1 45
2 79 46 13
3

4 92
5 16 49
6

7 7
8 41
9

10 43
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Complexity of chaining

Run-times: insert takes time Θ(1).
search and delete have run-time Θ

(
1 + size of bucket T [h(k)]

)
.

The average bucket-size is n
M =: α.

(α is also called the load factor.)

However, this does not imply that the average-case cost of search and
delete is Θ(1 + α).

▶ Consider the case where all keys hash to the same slot
▶ The average bucket-size is still α
▶ But the operations take Θ(n) time on average

To get meaningful average-case bounds, we need some assumptions
on the hash-functions and the keys!
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Complexity of chaining

To analyze what happens ‘on average’, switch to randomized hashing.
How can we randomize?

Assume that the hash-function is chosen randomly.
▶ We will later see examples how to do this.

To be able to analyze, we assume the following:

Uniform Hashing Assumption: Any possible hash-function
is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)
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Complexity of chaining
UHA implies that the distribution of keys is unimportant.

Claim: Hash-values are uniform.
Formally: P

(
h(k) = i

)
= 1

M for any key k and slot i . Proof:
▶ Let Hj (for j = 0, . . . , M−1) be hash-functions with h(k) = j .
▶ For any i ̸= j , can map Hi to Hj and vice versa.
▶ So P

(
h(k) = i

)
= P(h ∈ Hi) = 1

M .
Claim: Hash-values of any two keys are independent of each other.
Proof: similar

Back to complexity of chaining:
Each bucket has expected length n

M ≤ α

▶ n other keys are in this slot with probability 1
M

Each key in dictionary is expected to collide with n−1
M other keys

▶ n − 1 other keys are in same slot with probability 1
M

Expected cost of search and delete is hence Θ(1 + α)
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Load factor and re-hashing
For hashing with chaining (and also other collision resolution
strategies), the run-time bound depends on α

(Recall: load factor α = n/M.)
We keep the load factor small by rehashing when needed:

0

T

1 45
2 79 46 13
3

4 92
5 16 49
6

7 7
8 41
9

10 43

0 46 92
T

1
2
3 49
4
5
6
7 7
8
9

10
11
12
13 13
14
15
16 16
17
18 41
19
20 43
21
22 45

▶ Keep track of n and M throughout operations
▶ If α gets too large, create new (roughly twice as big) hash-table, new

hash-function(s) and re-insert all items in the new table.
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Hashing with Chaining summary

For Hashing with Chaining: Rehash so that α ∈ Θ(1) throughout
Rehashing costs Θ(M + n) time (plus the time to find a new hash
function).
Rehashing happens rarely enough that we can ignore this term when
amortizing over all operations.
We should also re-hash when α gets too small, so that M ∈ Θ(n)
throughout, and the space is always Θ(n).

Summary: The amortized expected cost for hashing with chaining is O(1)
and the space is Θ(n)

(assuming uniform hashing and α ∈ Θ(1) throughout)

Theoretically perfect, but too slow in practice.
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Open addressing
Main idea: Avoid the links needed for chaining by permitting only one
item per slot, but allowing a key k to be in multiple slots.

search and insert follow a probe sequence of possible locations for key k:
⟨h(k, 0), h(k, 1), h(k, 2), . . . h(k, M−1)⟩ until an empty spot is found.

0 1 2 3 4 5 6 7 8 9 10

key-value pair (k, v)

preferred slot: h(k, 0)
next-best: h(k, 1)

h(k, 2)

Simplest method for open addressing: linear probing
h(k, j) = (h(k) + j) mod M, for some hash function h.
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

h

0

451

132

3

924

495

6

77

8

9

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(41)

h(41, 0) = 8

0

451

132

3

924

495

6

77

418

9

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(84)

h(84, 0) = 7

0
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924

495

6
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418

9

4310

M. Petrick, É. Schost (CS-UW) CS240 – Module 7 Spring 2024 14 / 30



Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(84)

h(84, 1) = 8

0

451

132

3

924

495

6

77

418

9
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(84)

h(84, 2) = 9

0

451

132

3

924

495

6

77

418

849

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(20)

h(20, 0) = 9

0

451

132

3

924

495

6

77

418

849

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(20)

h(20, 1) = 10

0

451

132

3

924

495

6

77

418

849

4310
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

insert(20)

h(20, 2) = 0

200

451

132

3

924

495

6

77

418

849

4310
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Probe sequence operations

delete becomes problematic:
Cannot leave an empty spot behind; the next search might otherwise
not go far enough.

We could try to move later items in probe sequence forward.
(But it is non-trivial to find one that can be moved.)
Better idea: lazy deletion:

▶ Mark spot as deleted (rather than NULL)
▶ Search continues past deleted spots.
▶ Insertion reuses deleted spots.

Keep track of how many items are ‘deleted’ and re-hash (to keep
space at Θ(n)) if there are too many.
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

200
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

delete(43)
h(43, 0) = 10

200

451

132

3

924

495

6

77

418

849

deleted10
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

search(63)
h(63, 0) = 8

200

451

132

3

924

495

6

77

418

849

deleted10
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

search(63)
h(63, 1) = 9

200
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132
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924

495
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

search(63)
h(63, 2) = 10
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

search(63)
h(63, 3) = 0

200
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

search(63)
h(63, 4) = 1
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

search(63)
h(63, 5) = 2
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Linear probing example

M = 11, h(k) = k mod 11, h(k, j) = (h(k) + j) mod 11.

search(63)
h(63, 6) = 3
not found

200
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Probe sequence operations

probe-sequence::insert(T , (k, v))
1. for (j = 0; j < M; j++)
2. if T [h(k, j)] is NULL or “deleted”
3. T [h(k, j)] = (k, v)
4. return “success”
5. return “failure to insert” // need to re-hash

probe-sequence-search(T , k)
1. for (j = 0; j < M; j++)
2. if T [h(k, j)] is NULL return “item not found”
3. if T [h(k, j)] has key k return T [h(k, j)]
4. // key is incorrect or “deleted”
5. // try next probe, i.e., continue for-loop
6. return “item not found”

M. Petrick, É. Schost (CS-UW) CS240 – Module 7 Spring 2024 17 / 30



Independent hash functions

Some hashing methods require two hash functions h0, h1.
These hash functions should be independent in the sense that the
random variables P(h0(k) = i) and P(h1(k) = j) are independent.
Using two modular hash-functions often leads to dependencies.

Better idea: Use multiplication method for second hash function:

h(k) = ⌊M(kA− ⌊kA⌋)⌋

▶ A is some floating-point number with 0 < A < 1
▶ kA− ⌊kA⌋ computes fractional part of kA, which is in [0, 1)
▶ Multiply with M to get floating-point number in [0, M)
▶ Round down to get integer in {0, . . . , M − 1}

Our examples use φ=
√

5−1
2 ≈ 0.618033988749.... as A.
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Better idea: Use multiplication method for second hash function:

h(k) = ⌊M(kA− ⌊kA⌋)⌋

▶ A is some floating-point number with 0 < A < 1
▶ kA− ⌊kA⌋ computes fractional part of kA, which is in [0, 1)
▶ Multiply with M to get floating-point number in [0, M)
▶ Round down to get integer in {0, . . . , M − 1}

Our examples use φ=
√

5−1
2 ≈ 0.618033988749.... as A.
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Double Hashing

Assume we have two hash independent functions h0, h1.
Assume further that h1(k) ̸= 0 and that h1(k) is relative prime with
the table-size M for all keys k.

▶ Choose M prime.
▶ Modify standard hash-functions to ensure h1(k) ̸= 0

E.g. modified multiplication method: h(k) = 1 + ⌊(M−1)(kA−⌊kA⌋)⌋

Double hashing: open addressing with probe sequence

h(k, j) =
(
h0(k) + j · h1(k)

)
mod M

search, insert, delete work just like for linear probing,
but with this different probe sequence.
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Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = ⌊10(φk − ⌊φk⌋)⌋+ 1
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Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = ⌊10(φk − ⌊φk⌋)⌋+ 1

insert(41)

h0(41) = 8

h(41, 0) = 8
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Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = ⌊10(φk − ⌊φk⌋)⌋+ 1

insert(194)

h0(194) = 7

h(194, 0) = 7
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insert(194)

h0(194) = 7

h(194, 0) = 7

h1(194) = 9

h(194, 1) = 5
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insert(194)

h0(194) = 7

h(194, 0) = 7

h1(194) = 9

h(194, 1) = 5

h(194, 2) = 3
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Cuckoo hashing

We use two independent hash functions h0, h1 and two tables T0, T1.

Main idea: An item with key
k can only be at T0[h0(k)] or
T1[h1(k)].

search and delete then always
take constant time.
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Cuckoo Hashing Insertion
insert always initially puts the new item into T0[h0(k)]

Evict item that may have been there already.
If so, evicted item inserted at alternate position
This may lead to a loop of evictions.

▶ Can show: If insertion is possible, then there are at most 2n evictions.
▶ So abort after too many attempts.

cuckoo::insert(k, v)
1. (kinsert , vinsert)← new key-value pair with (k, v)
2. i ← 0
3. do at most 2n times:
4. (kevict , vevict)← Ti [hi(kinsert)] // save old KVP
5. Ti [hi(kinsert)]← (kinsert , vinsert) // put in new KVP
6. if (kevict , vevict) is NULL return “success”
7. else // repeat in other table
8. (kinsert , vinsert)← (kevict , vevict); i ← 1− i
9. return “failure to insert” // need to re-hash
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

()

i =
k =

h0(k) =
h1(k) =
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(51)

i = 0
k = 51

h0(k) = 7
h1(k) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(95)

i = 0
k = 95

h0(k) = 7
h1(k) = 7
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(95)

i = 1
k = 51

h0(k) = 7
h1(k) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(95)

i = 1
k = 51

h0(k) = 7
h1(k) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(26)

i = 0
k = 26

h0(k) = 4
h1(k) = 0
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(26)

i = 1
k = 59

h0(k) = 4
h1(k) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(26)

i = 0
k = 51

h0(k) = 7
h1(k) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(26)

i = 1
k = 95

h0(k) = 4
h1(k) = 7
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(26)

i = 1
k = 95

h0(k) = 4
h1(k) = 7

440

1

2

3

264

5

6

517

8

9

10

T0

0

1

2

3

4

595

6

957

8

929

10

T1

M. Petrick, É. Schost (CS-UW) CS240 – Module 7 Spring 2024 23 / 30



Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

search(59)

i = 1
k =

h0(59) = 4
h1(59) = 5
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Cuckoo hashing example
M = 11, h0(k) = k mod 11, h1(k) = ⌊11(φk − ⌊φk⌋)⌋

delete(59)

i = 1
k =

h0(59) = 4
h1(59) = 5
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Cuckoo hashing discussions

Can show: expected number of evictions during insert is O(1).
▶ So in practice, stop evictions much earlier than 2n rounds.

This crucially requires load factor α < 1
2 .

▶ Here α = n/(size of T0 + size of T1)
So cuckoo hashing is wasteful on space.
In fact, space is ω(n) if insert forces lots of re-hashing.
Can show: expected space is O(n).

There are many possible variations:
The two hash-tables could be combined into one.
Be more flexible when inserting: Always consider both possible
positions.
Use k > 2 allowed locations (i.e., k hash-functions).
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Complexity of open addressing strategies

For any open addressing scheme, we must have α ≤ 1 (why?).
For the analysis, we require 0 < α < 1 (not arbitrarily close).
Cuckoo hashing requires 0 < α < 1/2 (not arbitrarily close).

Under these restrictions (and the universal hashing assumption):
All strategies have O(1) expected time for search, insert, delete.
Cuckoo Hashing has O(1) worst-case time for search, delete.
Probe sequences use O(n) worst-case space,
Cuckoo Hashing uses O(n) expected space.

But for the worst-case run-time is Θ(n) for insert (even for chaining, if we
have to re-hash)

In practice, double hashing seems the most popular, or cuckoo hashing if
there are many more searches than insertions.
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Choosing a good hash function

Recall uniform hashing assumption: Hash function is randomly
chosen among all possible hash-functions.

Satisfying this is impossible: There are too many hash functions; we
would not know how to look up h(k).

We need to compromise:
▶ Choose a hash-function that is easy to compute.
▶ But aim for P(two keys collide) = 1

M w.r.t. key-distribution.
▶ This is enough to prove the expected run-time bounds for chaining

In practice: hope for good performance by choosing a hash-function
that is

▶ unrelated to any possible patterns in the data, and
▶ depends on all parts of the key.
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Choosing a good hash function
We saw two basic methods for integer keys:

Modular method: h(k) = k mod M.
▶ We should choose M to be a prime.
▶ This means finding a suitable prime quickly when re-hashing.
▶ This can be done in O(M log log M) time (no details).

Multiplication method: h(k) = ⌊M(kA− ⌊kA⌋)⌋,
for some number A with 0 < A < 1.

▶ Multiplying with A is used to scramble the keys.
So A should be irrational to avoid patterns in the keys.

▶ Experiments show that good scrambling is achieved when A is the
golden ratio φ=

√
5−1
2 ≈ 0.618033988749.....

▶ We should use at least log |U|+ log M bits of A.

But every hash function must do badly for some sequences of inputs:
If the universe contains at least M · n keys, then there are n keys that
all hash to the same value.
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Carter-Wegman’s universal hashing
Better idea: Choose hash-function randomly!

Requires: all keys are in {0, . . . , p − 1} for some (big) prime p.
At initialization, and whenever we re-hash:

▶ Choose M < p arbitrarily, power of 2 is ok.
▶ Choose (and store) two random numbers a, b

⋆ b = random(p)
⋆ a = 1 + random(p − 1) (so a ̸= 0)

▶ Use as hash-function h(k) =
(
(ak + b) mod p

)
mod M

h(k) can be computed quickly.

Analysis of these Carter-Wegman hash functions (no details):
Choosing h in this way does not satisfy uniform hashing assumption
But can show: two keys collide with probability at most 1

M .
This suffices to prove the run-time bounds for hashing with chaining.
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Multi-dimensional Data
What if the keys are multi-dimensional, such as strings?

Standard approach is to flatten string w to integer f (w) ∈ N, e.g.

A · P · P · L · E → (65, 80, 80, 76, 69) (ASCII)
→ 65R4 + 80R3 + 80R2 + 76R1 + 69R0

(for some radix R, e.g. R = 255)

We combine this with a modular hash function: h(w) = f (w) mod M

To compute this in O(|w |) time without overflow, use Horner’s rule and
apply mod early. For exampe, h(APPLE ) is

(((((((
65R+80

)
mod M

)
R+80

)
mod M

)
R+76

)
mod M

)
R+69

)
mod M
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Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees
O(log n) worst-case operation cost
Does not require any assumptions, special functions,
or known properties of input distribution
Predictable space usage (exactly n nodes)
Never need to rebuild the entire structure
Supports ordered dictionary operations (successor, select, rank etc.)

Advantages of Hash Tables
O(1) operation cost (if hash-function random and load factor small)
We can choose space-time tradeoff via load factor
Cuckoo hashing achieves O(1) worst-case for search & delete

M. Petrick, É. Schost (CS-UW) CS240 – Module 7 Spring 2024 30 / 30


	Dictionaries via Hashing
	Hashing Introduction
	Direct Addressing
	Hashing
	Hashing example
	Collisions

	Hashing with Chaining
	Hashing with Chaining
	Chaining example
	Complexity of chaining
	Complexity of chaining
	Complexity of chaining
	Load factor and re-hashing
	Hashing with Chaining summary

	Probe Sequences
	Open addressing
	Linear probing example
	Probe sequence operations
	Linear probing example
	Probe sequence operations
	Independent hash functions
	Double Hashing
	Double hashing example

	Cuckoo hashing
	Cuckoo hashing
	Cuckoo Hashing Insertion
	Cuckoo hashing example
	Cuckoo hashing discussions
	Complexity of open addressing strategies

	Hash Function Strategies
	Choosing a good hash function
	Choosing a good hash function
	Carter-Wegman's universal hashing
	Multi-dimensional Data
	Hashing vs. Balanced Search Trees



