CS 240 – Data Structures and Data Management

Module 7: Dictionaries via Hashing

Mark Petrick, Éric Schost

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2024

version 2024-06-26 14:33

Outline

[Dictionaries via Hashing](#page-1-0)

- **[Hashing Introduction](#page-2-0)**
- [Hashing with Chaining](#page-10-0)
- **[Probe Sequences](#page-29-0)**
- **•** [Cuckoo hashing](#page-62-0)
- **[Hash Function Strategies](#page-82-0)**

Outline

- **[Hashing Introduction](#page-2-0)**
- **[Hashing with Chaining](#page-10-0)**
- [Probe Sequences](#page-29-0)
- **[Cuckoo hashing](#page-62-0)**
- **[Hash Function Strategies](#page-82-0)**

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \leq k \leq M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- \bullet search(k): Check whether A[k] is NULL
- \bullet insert(k, v): $A[k] \leftarrow v$
- \bullet delete(k): $A[k] \leftarrow \text{NULL}$

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \leq k \leq M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- search(k): Check whether $A[k]$ is NULL
- \bullet insert(k, v): $A[k] \leftarrow v$
- \bullet delete(k): $A[k] \leftarrow \text{NULL}$

Each operation is $\Theta(1)$. Total space is $\Theta(M)$.

What sorting algorithm does this remind you of?

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \leq k \leq M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- search(k): Check whether $A[k]$ is NULL
- \bullet insert(k, v): $A[k] \leftarrow v$
- \bullet delete(k): $A[k] \leftarrow \text{NULL}$

Each operation is $\Theta(1)$. Total space is $\Theta(M)$.

What sorting algorithm does this remind you of? Bucket Sort

Hashing

Two disadvantages of direct addressing:

- It cannot be used if the keys are not integers.
- It wastes space if M is unknown or $n \ll M$.

Hashing idea: Map (arbitrary) keys to integers in range {0*, . . . ,* M−1} (for an integer M of our choice), then use direct addressing.

Details:

- **Assumption:** We know that all keys come from some **universe** U. (Typically $U =$ non-negative integers, sometimes $|U|$ finite.)
- We pick a **table-size** M.
- We pick a **hash function** $h: U \rightarrow \{0, 1, \ldots, M-1\}.$ (Commonly used: $h(k) = k \text{ mod } M$. We will see other choices later.)
- Store dictionary in **hash table**, i.e., an array T of size M.
- An item with key k wants to be stored in **slot** $h(k)$, i.e., at $T[h(k)]$.

Hashing example

 $U = N$, $M = 11$, $h(k) = k \text{ mod } 11$. The hash table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).

Collisions

- **•** Generally hash function h is not injective, so many keys can map to the same integer.
	- ▶ For example, $h(46) = 2 = h(13)$ if $h(k) = k \text{ mod } 11$.
- \bullet We get **collisions**: we want to insert (k, v) into the table, but $T[h(k)]$ is already occupied.

Collisions

- \bullet Generally hash function h is not injective, so many keys can map to the same integer.
	- ▶ For example, $h(46) = 2 = h(13)$ if $h(k) = k \text{ mod } 11$.
- \bullet We get **collisions**: we want to insert (k, v) into the table, but $T[h(k)]$ is already occupied.
- There are many strategies to resolve collisions:

Outline

[Dictionaries via Hashing](#page-1-0)

• [Hashing Introduction](#page-2-0)

[Hashing with Chaining](#page-10-0)

- [Probe Sequences](#page-29-0)
- **[Cuckoo hashing](#page-62-0)**
- **[Hash Function Strategies](#page-82-0)**

Hashing with Chaining

Simplest collision-resolution strategy: Each slot stores a **bucket** containing 0 or more KVPs.

- A bucket could be implemented by any dictionary realization (even another hash table!).
- The simplest approach is to use unsorted lists with MTF for buckets. This is called collision resolution by **chaining**.

Hashing with Chaining

Simplest collision-resolution strategy: Each slot stores a **bucket** containing 0 or more KVPs.

- A bucket could be implemented by any dictionary realization (even another hash table!).
- The simplest approach is to use unsorted lists with MTF for buckets. This is called collision resolution by **chaining**.
- *insert*(k, v): Add (k, v) to the front of the list at $T[h(k)]$.
- search(k): Look for key k in the list at $T[h(k)]$. Apply MTF-heuristic!
- \bullet delete(k): Perform a search, then delete from the linked list.

insert takes time $O(1)$. search and delete have run-time $O(1 + \text{length of list at } T(h(k)))$.

 $M = 11,$ $h(k) = k \text{ mod } 11$

M. Petrick, É. Schost (CS-UW) [CS240 – Module 7](#page-0-0) Spring 2024 7 / 30

 $M = 11,$ $h(k) = k \text{ mod } 11$

$$
insert(41)
$$

$$
h(41)=8
$$

M. Petrick, É. Schost (CS-UW) [CS240 – Module 7](#page-0-0) Spring 2024 7 / 30

$$
insert(41)
$$

$$
h(41)=8
$$

$$
insert(46)
$$

$$
h(46) = 2
$$

$$
insert(46)
$$

$$
h(46) = 2
$$

$$
insert(16)
$$

$$
h(16)=5
$$

$$
\mathit{insert}(16)
$$

$$
h(16)=5
$$

$$
\mathit{insert}(79)
$$

$$
h(79) = 2
$$

Run-times: insert takes time Θ(1). search and delete have run-time $\Theta\big(1+{\rm size\ of\ bucket}\ \mathcal{T}[h(k)]\big).$

The *average* bucket-size is $\frac{n}{M} =: \alpha$. (*α* is also called the **load factor**.)

Run-times: insert takes time Θ(1). search and delete have run-time $\Theta\big(1+{\rm size\ of\ bucket}\ \mathcal{T}[h(k)]\big).$

The *average* bucket-size is $\frac{n}{M} =: \alpha$. (*α* is also called the **load factor**.)

• However, this does not imply that the *average-case* cost of *search* and delete is $\Theta(1+\alpha)$.

- \triangleright Consider the case where all keys hash to the same slot
- ▶ The average bucket-size is still *α*
- **►** But the operations take $\Theta(n)$ time on average
- To get meaningful average-case bounds, we need some assumptions on the hash-functions and the keys!

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?

• To analyze what happens 'on average', switch to *randomized* hashing.

- How can we randomize? Assume that the hash-function is chosen randomly.
	- ▶ We will later see examples how to do this.
- To be able to analyze, we assume the following:

Uniform Hashing Assumption: Any possible hash-function is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

UHA implies that the distribution of keys is unimportant.

Claim: Hash-values are uniform. Formally: $P(h(k) = i) = \frac{1}{k}$ $\frac{1}{M}$ for any key k and slot *i*. Proof:

- **►** Let \mathcal{H}_i (for $j = 0, ..., M-1$) be hash-functions with $h(k) = j$.
- ▶ For any $i \neq j$, can map \mathcal{H}_i to \mathcal{H}_i and vice versa.
- ► So $P(h(k) = i) = P(h \in \mathcal{H}_i) = \frac{1}{M}$.
- **Claim:** Hash-values of any two keys are independent of each other. Proof: similar

UHA implies that the distribution of keys is unimportant.

Claim: Hash-values are uniform. Formally: $P(h(k) = i) = \frac{1}{k}$ $\frac{1}{M}$ for any key k and slot *i*. Proof:

- **►** Let \mathcal{H}_i (for $j = 0, ..., M-1$) be hash-functions with $h(k) = j$.
- ▶ For any $i \neq j$, can map \mathcal{H}_i to \mathcal{H}_i and vice versa.
- ► So $P(h(k) = i) = P(h \in \mathcal{H}_i) = \frac{1}{M}$.
- **Claim:** Hash-values of any two keys are independent of each other. Proof: similar

Back to complexity of chaining:

- Each bucket has expected length $\frac{n}{M} \leq \alpha$
	- ▶ *n* other keys are in this slot with probability $\frac{1}{M}$
- Each key in dictionary is expected to collide with $\frac{n-1}{M}$ other keys
	- ▶ $n-1$ other keys are in same slot with probability $\frac{1}{M}$
- Expected cost of *search* and *delete* is hence $\Theta(1+\alpha)$

Load factor and re-hashing

• For hashing with chaining (and also other collision resolution strategies), the run-time bound depends on *α*

(Recall: *load factor* $\alpha = n/M$.)

We keep the load factor small by **rehashing** when needed:

- \blacktriangleright Keep track of n and M throughout operations
- \blacktriangleright If α gets too large, create new (roughly twice as big) hash-table, new hash-function(s) and re-insert all items in the new table.

Hashing with Chaining summary

- For Hashing with Chaining: Rehash so that *α* ∈ Θ(1) throughout
- Rehashing costs $\Theta(M + n)$ time (plus the time to find a new hash function).
- Rehashing happens rarely enough that we can ignore this term when amortizing over all operations.
- We should also re-hash when α gets too small, so that $M \in \Theta(n)$ throughout, and the space is always $\Theta(n)$.

Summary: The amortized expected cost for hashing with chaining is $O(1)$ and the space is $\Theta(n)$

(assuming uniform hashing and $\alpha \in \Theta(1)$ throughout)

Theoretically perfect, but too slow in practice.

Outline

7 [Dictionaries via Hashing](#page-1-0)

- **[Hashing Introduction](#page-2-0)**
- **[Hashing with Chaining](#page-10-0)**

• [Probe Sequences](#page-29-0)

- **[Cuckoo hashing](#page-62-0)**
- **[Hash Function Strategies](#page-82-0)**

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

search and insert follow a **probe sequence** of possible locations for key k: ⟨h(k*,* 0)*,* h(k*,* 1)*,* h(k*,* 2)*, . . .* h(k*,* M−1)⟩ until an empty spot is found.

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

search and insert follow a **probe sequence** of possible locations for key k: ⟨h(k*,* 0)*,* h(k*,* 1)*,* h(k*,* 2)*, . . .* h(k*,* M−1)⟩ until an empty spot is found.

Simplest method for open addressing: *linear probing* $h(k, j) = (h(k) + j)$ mod M, for some hash function h.

M. Petrick, É. Schost (CS-UW) [CS240 – Module 7](#page-0-0) Spring 2024 13 / 30

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k,j) = (h(k) + j) \text{ mod } 11$.

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k, j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & & & \\
1 & 45 \\
2 & 13 \\
3 & & \\
4 & 92 \\
5 & 49 \\
6 & & \\
7 & 7 \\
8 & 41 \\
9 & & \\
10 & 43\n\end{array}
$$

$$
insert(41)
$$

$$
h(41,0)=8
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k, j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & & & \\
1 & 45 \\
2 & 13 \\
3 & & \\
4 & 92 \\
5 & 49 \\
6 & & \\
7 & 7 \\
8 & 41 \\
9 & & \\
10 & 43\n\end{array}
$$

$$
insert(84)
$$

$$
h(84,0)=7
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k, j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & & & \\
1 & 45 \\
2 & 13 \\
3 & & \\
4 & 92 \\
5 & 49 \\
6 & & \\
7 & 7 \\
8 & 41 \\
9 & & \\
10 & 43\n\end{array}
$$

insert(84)

$$
h(84,1)=8
$$
$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k, j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & & & \\
1 & 45 \\
2 & 13 \\
3 & & \\
4 & 92 \\
5 & 49 \\
6 & & \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & 43\n\end{array}
$$

insert(84)

$$
h(84,2)=9
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k, j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & & & \\
1 & 45 \\
2 & 13 \\
3 & & \\
4 & 92 \\
5 & 49 \\
6 & & \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & 43\n\end{array}
$$

insert(20)

$$
h(20,0)=9
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k, j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & & & \\
1 & 45 \\
2 & 13 \\
3 & & \\
4 & 92 \\
5 & 49 \\
6 & & \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & 43\n\end{array}
$$

insert(20)

$$
h(20,1)=10
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k,j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & 20 \\
1 & 45 \\
2 & 13 \\
3 \\
4 & 92 \\
5 & 49 \\
6 & 7 \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & 43\n\end{array}
$$

insert(20)

$$
h(20,2)=0\\
$$

delete becomes problematic:

Cannot leave an empty spot behind; the next search might otherwise not go far enough.

delete becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- We could try to move later items in probe sequence forward. (But it is non-trivial to find one that can be moved.)

delete becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- We could try to move later items in probe sequence forward. (But it is non-trivial to find one that can be moved.)
- Better idea: **lazy deletion**:
	- ▶ Mark spot as *deleted* (rather than NULL)
	- ▶ Search continues past deleted spots.
	- ▶ Insertion reuses deleted spots.

delete becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- We could try to move later items in probe sequence forward. (But it is non-trivial to find one that can be moved.)
- Better idea: **lazy deletion**:
	- ▶ Mark spot as *deleted* (rather than NULL)
	- ▶ Search continues past deleted spots.
	- ▶ Insertion reuses deleted spots.

Keep track of how many items are 'deleted' and re-hash (to keep space at $\Theta(n)$) if there are too many.

 $M = 11,$ $h(k) = k \text{ mod } 11,$ $h(k, j) = (h(k) + j) \text{ mod } 11.$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k,j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & 20 \\
1 & 45 \\
2 & 13 \\
3 & \\
4 & 92 \\
5 & 49 \\
6 & \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & deleted\n\end{array}
$$

$$
\frac{delete(43)}{h(43,0)} = 10
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k,j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & 20 \\
1 & 45 \\
2 & 13 \\
3 & \\
4 & 92 \\
5 & 49 \\
6 & \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & deleted\n\end{array}
$$

$$
\frac{search(63)}{h(63,0)} = 8
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k,j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & 20 \\
1 & 45 \\
2 & 13 \\
3 & \\
4 & 92 \\
5 & 49 \\
6 & \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & deleted\n\end{array}
$$

$$
\frac{search(63)}{h(63, 1)} = 9
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k,j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & 20 \\
1 & 45 \\
2 & 13 \\
3 & \\
4 & 92 \\
5 & 49 \\
6 & \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & deleted\n\end{array}
$$

$$
\frac{search(63)}{h(63,2)} = 10
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k,j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & 20 \\
1 & 45 \\
2 & 13 \\
3 & \\
4 & 92 \\
5 & 49 \\
6 & \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & deleted\n\end{array}
$$

$$
\frac{search(63)}{h(63,3)} = 0
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k,j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & 20 \\
1 & 45 \\
2 & 13 \\
3 & \\
4 & 92 \\
5 & 49 \\
6 & \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & deleted\n\end{array}
$$

$$
\frac{search(63)}{h(63, 4)} = 1
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k,j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & 20 \\
1 & 45 \\
2 & 13 \\
3 \\
4 & 92 \\
5 & 49 \\
6 & 7 \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & deleted\n\end{array}
$$

$$
\frac{search(63)}{h(63,5)} = 2
$$

$$
M = 11
$$
, $h(k) = k \text{ mod } 11$, $h(k,j) = (h(k) + j) \text{ mod } 11$.

$$
\begin{array}{c|cc}\n0 & 20 \\
1 & 45 \\
2 & 13 \\
3 & \\
4 & 92 \\
5 & 49 \\
6 & \\
7 & 7 \\
8 & 41 \\
9 & 84 \\
10 & deleted\n\end{array}
$$

$$
\frac{search(63)}{h(63,6)} = 3
$$
\nnot found

probe-sequence-search(T*,* k) 1. **for** (j = 0; j *<* M; j++) 2. **if** T[h(k*,* j)] is NULL **return** "item not found" 3. **if** T[h(k*,* j)] has key k **return** T[h(k*,* j)] 4. // key is incorrect or "deleted" 5. // try next probe, i.e., continue for-loop 6. **return** "item not found"

Independent hash functions

- Some hashing methods require two hash functions h_0, h_1 .
- These hash functions should be *independent* in the sense that the random variables $P(h_0(k) = i)$ and $P(h_1(k) = j)$ are independent.
- Using two modular hash-functions often leads to dependencies.

Independent hash functions

- Some hashing methods require two hash functions h_0, h_1 .
- These hash functions should be *independent* in the sense that the random variables $P(h_0(k) = i)$ and $P(h_1(k) = j)$ are independent.
- Using two modular hash-functions often leads to dependencies.
- Better idea: Use *multiplication method* for second hash function:

$$
h(k) = \lfloor M(kA - \lfloor kA \rfloor) \rfloor
$$

- ▶ A is some floating-point number with 0 *<* A *<* 1
- ▶ kA − ⌊kA⌋ computes fractional part of kA, which is in [0*,* 1)
- ▶ Multiply with M to get floating-point number in [0*,* M)
- ▶ Round down to get integer in {0*, . . . ,* M − 1}

Our examples use $\varphi=$ $\frac{\sqrt{5}-1}{2} \approx 0.618033988749...$ as A.

Double Hashing

- Assume we have two hash independent functions h_0, h_1 .
- Assume further that $h_1(k) \neq 0$ and that $h_1(k)$ is relative prime with the table-size M for all keys k .
	- \triangleright Choose M prime.
	- \blacktriangleright Modify standard hash-functions to ensure $h_1(k) \neq 0$ E.g. modified multiplication method: $h(k) = 1 + |(M-1)(kA-|kA|)|$
- **Double hashing:** open addressing with probe sequence

$$
h(k,j) = (h_0(k) + j \cdot h_1(k)) \mod M
$$

• search, insert, delete work just like for linear probing. but with this different probe sequence.

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ $h_1(k) = |10(\varphi k - |\varphi k|)| + 1$

$$
M = 11, \t h_0(k) = k \mod 11, \t h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1
$$

$$
\frac{1}{1} \mod 1
$$

43

$$
M = 11, \t h_0(k) = k \mod 11, \t h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1
$$

$$
\frac{1}{1} \mod 1
$$

$$
\frac{4}{1} \mod 1
$$

$$
\frac{4}{92}
$$

$$
\frac{4}{4} \mod 1
$$

$$
\frac{4}{9} \mod 1
$$

$$
\frac{4}{1} \mod 1
$$

$$
\frac{4}{9} \mod 1
$$

$$
\frac{4}{1} \mod 1
$$

$$
\frac{4}{9} \mod 1
$$

43

$$
M = 11, \qquad h_0(k) = k \text{ mod } 11, \qquad h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1
$$

insert(194) $h_0(194) = 7$ $h(194, 0) = 7$ $h_1(194) = 9$ $h(194, 1) = 5$ $\mathbf{0}$ 3 6 9

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ $h_1(k) = |10(\varphi k - |\varphi k|)| + 1$

insert(194) $h_0(194) = 7$ $h(194, 0) = 7$ $h_1(194) = 9$ $h(194, 1) = 5$ $h(194, 2) = 3$ $\mathbf{0}$ 6 9 10

Outline

[Dictionaries via Hashing](#page-1-0)

- **[Hashing Introduction](#page-2-0)**
- **[Hashing with Chaining](#page-10-0)**
- [Probe Sequences](#page-29-0)
- **•** [Cuckoo hashing](#page-62-0)
- **[Hash Function Strategies](#page-82-0)**

Cuckoo hashing

We use two independent hash functions h_0 , h_1 and two tables T_0 , T_1 .

Main idea: An item with key k can only be at $T_0[h_0(k)]$ or $T_1[h_1(k)]$.

search and delete then always take constant time.

Cuckoo Hashing Insertion

insert always initially puts the new item into $T_0[h_0(k)]$

- Evict item that may have been there already.
- If so, evicted item inserted at alternate position
- This may lead to a loop of evictions.
	- \triangleright **Can show:** If insertion is possible, then there are at most $2n$ evictions.
	- \triangleright So abort after too many attempts.

cuckoo::insert(k*,* v) 1. (kinsert*,* vinsert) ← new key-value pair with (k*,* v) 2. i ← 0 3. **do** at most 2n times: 4. (kevict*,* vevict) ← Tⁱ [hi(kinsert)] // save old KVP 5. Tⁱ [hi(kinsert)] ← (kinsert*,* vinsert) // put in new KVP 6. **if** (kevict*,* vevict) is NULL **return** "success" 7. **else** // repeat in other table 8. (kinsert*,* vinsert) ← (kevict*,* vevict); i ← 1 − i 9. **return** "failure to insert" // need to re-hash

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ h

$$
\eta_1(k)=\lfloor 11(\varphi k-\lfloor \varphi k\rfloor)\rfloor
$$

insert(51)

$$
i = 0
$$

\n
$$
k = 51
$$

\n
$$
h_0(k) = 7
$$

\n
$$
h_1(k) = 5
$$

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ h

$$
b_1(k)=\lfloor 11(\varphi k-\lfloor \varphi k\rfloor)\rfloor
$$

insert(51)

$$
i = 0
$$

\n
$$
k = 51
$$

\n
$$
h_0(k) = 7
$$

\n
$$
h_1(k) = 5
$$

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ h

$$
\eta_1(k)=\lfloor 11(\varphi k-\lfloor \varphi k\rfloor)\rfloor
$$

insert(95)

$$
i = 0
$$

$$
k = 95
$$

$$
h_0(k) =
$$

$$
h_0(k) = 7
$$

$$
h_1(k) = 7
$$

M. Petrick, É. Schost (CS-UW) [CS240 – Module 7](#page-0-0) Spring 2024 23 / 30

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ $h_1(k) = |11(\varphi k - |\varphi k|)|$

insert(95)

 $i = 1$ $k = 51$ $h_0(k) = 7$ $h_1(k) = 5$

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ h_1

$$
\eta_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor
$$

insert(95)

$$
i = 1
$$

$$
k = 51
$$

$$
h_0(k) = 7
$$

 $h_1(k) = 5$

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ h

$$
\eta_1(k)=\lfloor 11(\varphi k-\lfloor \varphi k\rfloor)\rfloor
$$

insert(26)

$$
i = 0
$$

\n
$$
k = 26
$$

\n
$$
h_0(k) = 4
$$

\n
$$
h_1(k) = 0
$$

$M = 11,$ $h_0(k) = k \text{ mod } 11,$ $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)

$$
i = 1
$$

\n
$$
k = 59
$$

\n
$$
h_0(k) = 4
$$

\n
$$
h_1(k) = 5
$$

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)

$$
i = 0
$$

\n
$$
k = 51
$$

\n
$$
h_0(k) = 7
$$

\n
$$
h_1(k) = 5
$$

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)

$$
i = 1
$$

\n
$$
k = 95
$$

\n
$$
h_0(k) = 4
$$

\n
$$
h_1(k) = 7
$$

M. Petrick, É. Schost (CS-UW) [CS240 – Module 7](#page-0-0) Spring 2024 23 / 30

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ h

$$
b_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor
$$

insert(26)

$$
i = 1
$$

\n
$$
k = 95
$$

\n
$$
h_0(k) = 4
$$

\n
$$
h_1(k) = 7
$$

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ $h_1(k) = |11(\varphi k - |\varphi k|)|$

search(59)

 $h_0(59) = 4$ $h_1(59) = 5$

T_0	
0	44
1	
2	
3	
7	26
5	
6	
7	51
8	
9	
10	

 $M = 11,$ $h_0(k) = k \text{ mod } 11,$ $h_1(k) = |11(\varphi k - |\varphi k|)|$

delete(59)

 $h_0(59) = 4$ $h_1(59) = 5$

 44 26 51

 $\mathbf{\tau}$

Cuckoo hashing discussions

- **Can show**: expected number of evictions during *insert* is $O(1)$.
	- \triangleright So in practice, stop evictions much earlier than 2n rounds.
- This crucially requires load factor $\alpha < \frac{1}{2}$.

► Here $\alpha = n/$ (size of $T_0 +$ size of T_1)

- So cuckoo hashing is wasteful on space.
- In fact, space is $\omega(n)$ if *insert* forces lots of re-hashing.
- **Can show**: expected space is $O(n)$.

Cuckoo hashing discussions

- **Can show**: expected number of evictions during *insert* is $O(1)$.
	- \triangleright So in practice, stop evictions much earlier than 2n rounds.
- This crucially requires load factor $\alpha < \frac{1}{2}$.

► Here $\alpha = n/$ (size of $T_0 +$ size of T_1)

- So cuckoo hashing is wasteful on space.
- In fact, space is $\omega(n)$ if *insert* forces lots of re-hashing.
- **Can show**: expected space is $O(n)$.

There are many possible variations:

- **•** The two hash-tables could be combined into one.
- Be more flexible when inserting: Always consider both possible positions.
- Use k *>* 2 allowed locations (i.e., k hash-functions).

Complexity of open addressing strategies

For any open addressing scheme, we *must* have α < 1 (why?). For the analysis, we require $0 < \alpha < 1$ (not arbitrarily close). Cuckoo hashing requires $0 < \alpha < 1/2$ (not arbitrarily close).

Under these restrictions (and the universal hashing assumption):

- All strategies have $O(1)$ expected time for search, insert, delete.
- Cuckoo Hashing has $O(1)$ worst-case time for search, delete.
- Probe sequences use $O(n)$ worst-case space, Cuckoo Hashing uses $O(n)$ expected space.

But for the worst-case run-time is $\Theta(n)$ for *insert* (even for chaining, if we have to re-hash)

Complexity of open addressing strategies

For any open addressing scheme, we *must* have α < 1 (why?). For the analysis, we require $0 < \alpha < 1$ (not arbitrarily close). Cuckoo hashing requires $0 < \alpha < 1/2$ (not arbitrarily close).

Under these restrictions (and the universal hashing assumption):

- All strategies have $O(1)$ expected time for search, insert, delete.
- Cuckoo Hashing has $O(1)$ worst-case time for search, delete.
- Probe sequences use $O(n)$ worst-case space, Cuckoo Hashing uses $O(n)$ expected space.

But for the worst-case run-time is $\Theta(n)$ for *insert* (even for chaining, if we have to re-hash)

In practice, double hashing seems the most popular, or cuckoo hashing if there are many more searches than insertions.

Outline

[Dictionaries via Hashing](#page-1-0)

- **[Hashing Introduction](#page-2-0)**
- **[Hashing with Chaining](#page-10-0)**
- [Probe Sequences](#page-29-0)
- **·** [Cuckoo hashing](#page-62-0)
- **[Hash Function Strategies](#page-82-0)**

- **•** Recall **uniform hashing assumption**: Hash function is randomly chosen among all possible hash-functions.
- Satisfying this is impossible: There are too many hash functions; we would not know how to look up $h(k)$.
- We need to compromise:
	- \triangleright Choose a hash-function that is easy to compute.
	- ▶ But aim for $P(\text{two keys collide}) = \frac{1}{M} \text{ w.r.t. key-distribution.}$
	- \triangleright This is enough to prove the expected run-time bounds for chaining

- Recall **uniform hashing assumption**: Hash function is randomly chosen among all possible hash-functions.
- Satisfying this is impossible: There are too many hash functions; we would not know how to look up $h(k)$.
- We need to compromise:
	- \triangleright Choose a hash-function that is easy to compute.
	- ▶ But aim for $P(\text{two keys collide}) = \frac{1}{M} \text{ w.r.t. key-distribution.}$
	- \triangleright This is enough to prove the expected run-time bounds for chaining
- In practice: hope for good performance by choosing a hash-function that is
	- \triangleright unrelated to any possible patterns in the data, and
	- \blacktriangleright depends on all parts of the key.

We saw two basic methods for integer keys:

- **Modular method**: $h(k) = k \text{ mod } M$.
	- \triangleright We should choose M to be a prime.
	- \triangleright This means finding a suitable prime quickly when re-hashing.
	- \blacktriangleright This can be done in $O(M \log \log M)$ time (no details).

We saw two basic methods for integer keys:

- **Modular method**: $h(k) = k \text{ mod } M$.
	- \triangleright We should choose M to be a prime.
	- \blacktriangleright This means finding a suitable prime quickly when re-hashing.
	- \triangleright This can be done in $O(M \log \log M)$ time (no details).
- **Multiplication method:** $h(k) = |M(kA |kA|)|$,

for some number A with $0 < A < 1$.

- \triangleright Multiplying with A is used to scramble the keys. So A should be irrational to avoid patterns in the keys.
- ▶ Experiments show that good scrambling is achieved when A is the golden ratio $\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749...$...
- \triangleright We should use at least $log |U| + log M$ bits of A.

We saw two basic methods for integer keys:

- **Modular method**: $h(k) = k \text{ mod } M$.
	- \triangleright We should choose M to be a prime.
	- \blacktriangleright This means finding a suitable prime quickly when re-hashing.
	- \triangleright This can be done in $O(M \log \log M)$ time (no details).
- **Multiplication method**: $h(k) = |M(kA |kA|)|$,

for some number A with $0 < A < 1$.

- \triangleright Multiplying with A is used to scramble the keys. So A should be irrational to avoid patterns in the keys.
- ▶ Experiments show that good scrambling is achieved when A is the golden ratio $\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749...$...
- \triangleright We should use at least $log |U| + log M$ bits of A.

But every hash function *must* do badly for some sequences of inputs:

If the universe contains at least $M \cdot n$ keys, then there are n keys that all hash to the same value.

M. Petrick, É. Schost (CS-UW) [CS240 – Module 7](#page-0-0) Spring 2024 27 / 30

Carter-Wegman's universal hashing

Better idea: Choose hash-function randomly!

- Requires: all keys are in $\{0, \ldots, p-1\}$ for some (big) prime p.
- At initialization, and whenever we re-hash:
	- \blacktriangleright Choose $M < p$ arbitrarily, power of 2 is ok.
	- ▶ Choose (and store) two random numbers a*,* b
		- \star b = random(p)
		- **★** $a = 1 + \text{random}(p-1)$ (so $a \neq 0$)
	- \blacktriangleright Use as hash-function $\big\vert\,h(k)=\big((\hbox{\it ak} + \hbox{\it b})\bmod p\big)$ mod M

• $h(k)$ can be computed quickly.

Carter-Wegman's universal hashing

Better idea: Choose hash-function randomly!

- Requires: all keys are in $\{0, \ldots, p-1\}$ for some (big) prime p.
- At initialization, and whenever we re-hash:
	- \blacktriangleright Choose $M < p$ arbitrarily, power of 2 is ok.
	- ▶ Choose (and store) two random numbers a*,* b
		- \star b = random(p)
		- \star a = 1 + random(p 1) (so a \neq 0)
	- \blacktriangleright Use as hash-function $\big\vert\,h(k)=\big((\hbox{\it ak} + \hbox{\it b})\bmod p\big)$ mod M
- $h(k)$ can be computed quickly.

Analysis of these **Carter-Wegman hash functions** (no details):

- Choosing h in this way does not satisfy uniform hashing assumption
- But can show: two keys collide with probability at most $\frac{1}{M}$.
- This suffices to prove the run-time bounds for hashing with chaining.

Multi-dimensional Data

What if the keys are multi-dimensional, such as strings?

Standard approach is to *flatten* string w to integer $f(w) \in \mathbb{N}$, e.g.

$$
\begin{array}{lcl} A \cdot P \cdot P \cdot L \cdot E & \to & (65,80,80,76,69) & \text{(ASCII)} \\ & \to & 65R^4 + 80R^3 + 80R^2 + 76R^1 + 69R^0 \\ & \text{(for some radix } R \text{, e.g. } R = 255) \end{array}
$$

We combine this with a modular hash function: $|h(w) = f(w) \text{ mod } M$

To compute this in $O(|w|)$ time without overflow, use Horner's rule and apply mod early. For exampe, $h(APPLE)$ is

$$
\left(\left(\left(\left(\left(\left(\left(65R+80\right)\bmod M\right)R+80\right)\bmod M\right)R+76\right)\bmod M\right)R+69\right)\bmod M\right)
$$

Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees

- \bullet $O(\log n)$ worst-case operation cost
- Does not require any assumptions, special functions, or known properties of input distribution
- Predictable space usage (exactly n nodes)
- Never need to rebuild the entire structure
- Supports ordered dictionary operations (successor, select, rank etc.)

Advantages of Hash Tables

- \bullet $O(1)$ operation cost (if hash-function random and load factor small)
- We can choose space-time tradeoff via load factor
- Cuckoo hashing achieves $O(1)$ worst-case for search & delete