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Dictionary ADT: Implementations thus far
A dictionary is a collection of key-value pairs (KVPs), supporting
operations search, insert, and delete.

Realizations we have seen so far:
Unordered array or list: Θ(1) insert, Θ(n) search and delete
Ordered array: Θ(log n) search, Θ(n) insert and delete
Binary search trees: Θ(height) search, insert and delete
Balanced Binary Search trees (AVL trees):

Θ(log n) search, insert, and delete

Improvements/Simplifications?
Can show: If the KVPs were inserted in random order, then the
expected height of the binary search tree would be O(log n).
How can we use randomization within the data structure to mirror
what would happen on random input?
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Towards Skip Lists

We did not consider an ordered list as realization of ADT Dictionary.
Why?

insert and delete take Θ(1) time in an ordered lists, once we know the
place where to do them.

The bottleneck is search:
▶ In an ordered array, we can do binary search to achieve O(log n)

run-time.
▶ In an ordered list, we cannot ‘skip to the middle’ and so cannot do

binary search.
▶ Therefore search takes Θ(n) time in an ordered list—too slow.

Idea: To speed up search in an ordered list, add more links to help us skip
forward quicker. Choose randomly when to add such links.
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Skip Lists

A hierarchy of ordered linked lists (levels) L0, L1, · · · , Lh:
Each list Li contains the special keys −∞ and +∞ (sentinels)
List L0 contains the KVPs of S in non-decreasing order.
(The other lists store only keys and references.)
Each list is a subsequence of the previous one, i.e.,
L0 ⊇ L1 ⊇ · · · ⊇ Lh
List Lh contains only the sentinels

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞
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Skip Lists

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

A few more definitions:
node = entry in one list vs. KVP = one non-sentinel entry in L0

There are (usually) more nodes than KVPs
Here # (non-sentinel) nodes = 14 vs. n← # KVPs = 9.
root = topmost left sentinel is the only field of the skip list.
Each node p has references p.after and p.below
Each key k belongs to a tower of nodes

▶ Height of tower of k: maximal index i such that k ∈ Li
▶ Height of skip list: maximal index h such that Lh exists
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Search in Skip Lists
For each list, find predecessor (node before where k would be).
This will also be useful for insert/delete.

get-predecessors (k)
1. p ← root
2. P ← stack of nodes, initially containing p
3. while p.below ̸= NULL do
4. p ← p.below
5. while p.after .key < k do p ← p.after
6. P.push(p)
7. return P

skipList::search (k)
1. P ← get-predecessors(k)
2. p0 ← P.top() // predecessor of k in L0
3. if p0.after .key = k return KVP at p0.after
4. else return “not found, but would be after p0”
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Example: Search in Skip Lists
Example: search(87)

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞

key compared with k

added to P

path taken by p

Final stack returned: (83,v)
83
65

−∞
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Delete in Skip Lists

It is easy to remove a key since we can find all predecessors.
Then eliminate lists if there are multiple ones with only sentinels.

skipList::delete(k)
1. P ← get-predecessors(k)
2. while P is non-empty
3. p ← P.pop() // predecessor of k in some list
4. if p.after .key = k
5. p.after ← p.after .after
6. else break // no more copies of k

7. p ← left sentinel of the root-list
8. while p.below .after is the ∞-sentinel

// the two top lists are both only sentinels, remove one
9. p.below ← p.below .below
10. p.after .below ← p.after .below .below
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Example: Delete in Skip Lists

Example: skipList::delete(65)

get-predecessors(65)
Height decrease

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞
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Insert in Skip Lists
skipList::insert(k, v)

There is no choice as to where to put the tower of k.
Only choice: how tall should we make the tower of k?

▶ Choose randomly ! Repeatedly toss a coin until you get tails
▶ Let i the number of times the coin came up heads
▶ We want key k to be in lists L0, . . . , Li , so i → height of tower of k

P(tower of key k has height ≥ i) =
( 1

2
)i

Before we can insert, we must check that these lists exist.
▶ Add sentinel-only lists, if needed, until height h satisfies h > i .

Then do the actual insertion.
▶ Use get-predecessors(k) to get stack P.
▶ The top i items of P are the predecessors p0, p1, · · · , pi of where k

should be in each list L0, L1, · · · , Li
▶ Insert (k, v) after p0 in L0, and k after pj in Lj for 1 ≤ j ≤ i
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Example: Insert in Skip Lists
Example: skipList::insert(52, v)
Coin tosses: H,T ⇒ i = 1

Have h = 3 > i ⇒ no need to add lists
get-predecessors(52)
Insert 52 in lists L0, . . . , Li

−∞L0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞
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Example 2: Insert in Skip Lists

Example: skipList::insert(100, v)
Coin tosses: H,H,H,T ⇒ i = 3

Height increase
get-predecessors(100)
Insert 100 in lists L0, . . . , Li

−∞L0 (23,v) (37,v) (44,v) (52,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞L1 37 52 65 83 94 ∞

−∞L2 65 ∞

−∞L3 ∞
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Insert in Skip Lists

skipList::insert(k, v)
1. for (i ← 0; random(2) = 1;i++) {} // random tower height

2. for (h← 0, p ← root.below;p ̸= NULL;p ← p.below, h++) {}
3. while i ≥ h // increase skip-list height?
4. create new sentinel-only list; link it in below topmost list
5. h++

6. P ← get-predecessors(k)
7. p ← P.pop() // insert (k, v) in L0
8. zbelow ← new node with (k, v);
9. zbelow .after← p.after; p.after← zbelow
10. while i > 0 // insert k in L1, . . . , Li
11. p ← P.pop()
12. z ← new node with k
13. z .after← p.after; p.after← z ; z .below← zbelow ; zbelow ← z
14. i ← i − 1
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Analysis of Skip Lists

Expected space usage: O(n)
▶ Set Xk = tower height of key k. Recall Pr(Xk ≥ i) =

( 1
2
)i .

▶ Define |Li | = #non-sentinels in Li . Observe |Li | =
∑

k χ(Xk ≥i).
▶ E [|Li |] = . . .
▶ E [#non-sentinels] =

∑h
i=0 E [|Li |] = . . .

Expected height: O(log n). [Similar (longer) proof omitted.]

skipList::get-predecessors: O(log n) expected time
▶ How often do we drop down (execute p ← p.below)? height.
▶ How often do we step forward (execute p ← p.after)?

Can show: expect to step forward at most once in each list

So search, insert, delete: O(log n) expected time
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Summary of Skip Lists

O(n) expected space, all operations take O(log n) expected time.

Lists make it easy to implement. We can also easily add more
operations (e.g. successor, merge,...)

As described they are no better than randomized binary search trees.

But there are numerous improvements on the space:
▶ Can save links (hence space) by implementing towers as array.

−∞ (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞
• • • • • •
• • •
• •

▶ Biased coin-flips to determine tower-heights give smaller expected space
▶ With both ideas, expected space is < 2n (less than for a BST).
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Outline

5 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Skip Lists
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Improving unsorted lists/arrays

Recall unsorted array realization: 90
0

30
1

60
2

20
3

50
4

search: Θ(n), insert: Θ(1), delete: Θ(1) (after a search)

Very simple and popular. Can we do something to make search more
effective in practice?

No: if items are accessed equally likely.
We can show that the average-case cost for search is then Θ(n).

Yes: if the search requests are biased:
some items are accessed much more frequently than others.

▶ 80/20 rule: 80% of outcomes result from 20% of causes.
▶ access: insertion or successful search
▶ Intuition: Frequently accessed items should be in the front.
▶ Two scenarios: Do we know the access distribution beforehand or not?
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Optimal Static Ordering

Scenario: We know access distribution, and want the best order of a list.

Example: key A B C D E
frequency of access 2 8 1 10 5

access-probability 2
26

8
26

1
26

10
26

5
26

Recall: T avg(n) =
∑

I∈In T (I) · (relative frequency of I)
= expected run-time on randomly chosen input
=

∑
I∈In T (I) · Pr(randomly chosen instance is I)

Count cost i if search-key (= instance I) is at ith position (i ≥ 1).
T avg(n)=expected access cost =

∑
i≥1

i · Pr
(
search for key at position i

)︸ ︷︷ ︸
access-probability of that key

Example: Order A B C D E has expected access cost
2
26 · 1 + 8

26 · 2 + 1
26 · 3 + 10

26 · 4 + 5
26 · 5 = 86

26 ≈ 3.31
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Optimal Static Ordering
Order A B C D E has expected access cost
2
26 · 1 + 8

26 · 2 + 1
26 · 3 + 10

26 · 4 + 5
26 · 5 = 86

26 ≈ 3.31

Order D B E A C is better!
10
26 · 1 + 8

26 · 2 + 5
26 · 3 + 2

26 · 4 + 1
26 · 5 = 66

26 ≈ 2.54

Claim: Over all possible static orderings, the one that sorts items by
non-increasing access-probability minimizes the expected access cost.

Proof:
Consider any other ordering.
How can we improve its access cost?
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Dynamic Ordering: MTF
Scenario: We do not know the access probabilities ahead of time.

Idea: modify the order dynamically, i.e., while we are accessing.
Rule of thumb (temporal locality): A recently accessed item is likely
to be used soon again.

Move-To-Front heuristic (MTF): Upon a successful search, move
the accessed item to the front of the list

A B C D E
↓ search(D)

D A B C E
↓ insert(F)

F D A B C E

We can also do MTF on an array, but should then insert and search
from the back so that we have room to grow.
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Dynamic Ordering: other ideas

There are other heuristics we could use:
Transpose heuristic: Upon a successful search, swap the accessed
item with the item immediately preceding it

A B C D E
↓ search(D)

A B D C E
↓ insert(F)

F A B D C E

Here the changes are more gradual.

Frequency-count heuristic: Keep counters how often items were
accessed, and sort in non-decreasing order.
Works well in practice, but requires auxiliary space.

M. Petrick, É. Schost (CS-UW) CS240 – Module 5 Spring 2024 20 / 21



Dynamic Ordering: other ideas

There are other heuristics we could use:
Transpose heuristic: Upon a successful search, swap the accessed
item with the item immediately preceding it

A B C D E
↓ search(D)

A B D C E
↓ insert(F)

F A B D C E

Here the changes are more gradual.
Frequency-count heuristic: Keep counters how often items were
accessed, and sort in non-decreasing order.
Works well in practice, but requires auxiliary space.

M. Petrick, É. Schost (CS-UW) CS240 – Module 5 Spring 2024 20 / 21



Summary of biased search requests

We are unlikely to know the access-probabilities of items, so optimal
static order is mostly of theoretical interest.

For any dynamic reordering heuristic, some sequence will defeat it
(have Θ(n) access-cost for each item).

MTF and Frequency-count work well in practice.

For MTF, can also prove theoretical guarantees. ▶ MTF is an online algorithm: Decide based on incomplete information.
▶ Compare it to the best offline algorithm (has complete information).
▶ Here, best offline-algorithm builds optimal static ordering.
▶ Can show: MTF is “2-competitive”: cost(MTF ) ≤ 2 · cost(OPT ).


There is very little overhead for MTF and other strategies; they
should be applied whenever unordered lists or arrays are used
(→ Hashing, text compression).
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