
CS 240 – Data Structures and Data Management

Module 4: Dictionaries

Mark Petrick, Éric Schost
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2024

version 2024-05-27 11:34

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 1 / 30

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024

ADT Dictionary (review)

Dictionary: An ADT consisting of a collection of items, each of which
contains

a key
some data (the “value”)

and is called a key-value pair (KVP). Keys can be compared and are
(typically) unique.

Operations:
search(k) (also called lookup(k))
insert(k, v)
delete(k) (also called remove(k)))
optional: successor, join, is-empty, size, etc.

Examples: symbol table, license plate database

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 2 / 30

Elementary Realizations (review)
Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the “value” could be a pointer)
Keys can be compared in constant time

Unordered array or linked list
search Θ(n)
insert Θ(1) (except array occasionally needs to resize)
delete Θ(n) (need to search)

Ordered array
search Θ(log n) (via binary search)
insert Θ(n)
delete Θ(n)

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 3 / 30

Binary Search (review)

Only applies to a sorted array : 30
0

40
1

70
2

90
3

100
4

120
5

140
6

binary-search(A, n, k)
A: Sorted array of size n, k: key
1. ℓ← 0, r ← n − 1
2. while (ℓ ≤ r)

3. m← ⌊ ℓ+r
2 ⌋

4. if (A[m] equals k) then return “found at A[m]”
5. else if (A[m] < k) then ℓ← m + 1
6. else r ← m − 1
7. return “not found, but would be between A[ℓ−1] and A[ℓ]”

We will return to binary search (and sometimes improve it!) later.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 4 / 30

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024

Binary Search Trees (review)
Structure Binary tree: all nodes have two (possibly empty) subtrees

Every node stores a KVP
Empty subtrees usually not shown

Ordering Every key k in T .left is less than the root key.
Every key k in T .right is greater than the root key.

15

6

∅ 10

8

∅ ∅

14

∅ ∅

25

23

22

∅ ∅

∅

29

27

∅ ∅

50

∅ ∅(In our examples we only show the keys, and we show them directly in the
node. A more accurate picture would be key = 15, <other info>•

)
M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 5 / 30

BST as realization of ADT Dictionary (review)

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23

22

29

27 50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 6 / 30

BST as realization of ADT Dictionary (review)

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23

22

29

27 50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 6 / 30

BST as realization of ADT Dictionary (review)

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23

22

29

27 50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 6 / 30

BST as realization of ADT Dictionary (review)

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23

22 ∅

29

27 50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 6 / 30

BST as realization of ADT Dictionary (review)

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::insert(24, v)

15

6

10

8 14

25

23

22 24

29

27 50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 6 / 30

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up
Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

6

10

8 14

25

23

22 24

29

27 50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 7 / 30

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up
Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

6

10

8 14

25

23

22 24

29

50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 7 / 30

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up

Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

6

10

8 14

25

23

22 24

29

50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 7 / 30

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up

Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

10

8 14

25

23

22 24

29

50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 7 / 30

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up
Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

10

8 14

25

23

22 24

29

50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 7 / 30

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up
Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

10

8 14

25

23

22 24

29

50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 7 / 30

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up
Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

22

10

8 14

25

23

24

29

50

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 7 / 30

Height of a BST

BST::search, BST::insert, BST::delete all have cost Θ(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
Worst-case: n − 1 = Θ(n)

Best-case: Θ(log n).
Any binary tree with n nodes has height h ≥ log(n + 1)− 1

(Layer i has at most 2i nodes. So n ≤
∑h

i=0 2i = 2h+1 − 1).

Goal: Create subclasses of BSTs where the height is always good.
Impose a structural property.
Argue that the property implies logarithmic height.
Discuss how to maintain the property during operatons.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 8 / 30

Height of a BST

BST::search, BST::insert, BST::delete all have cost Θ(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
Worst-case: n − 1 = Θ(n)

Best-case: Θ(log n).
Any binary tree with n nodes has height h ≥ log(n + 1)− 1

(Layer i has at most 2i nodes. So n ≤
∑h

i=0 2i = 2h+1 − 1).

Goal: Create subclasses of BSTs where the height is always good.
Impose a structural property.
Argue that the property implies logarithmic height.
Discuss how to maintain the property during operatons.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 8 / 30

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024

AVL Trees

Introduced by Adel’son-Vel’skĭı and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.

Rephrase: If node v has left subtree L and right subtree R, then

balance(v) := height(R)− height(L) must be in {−1, 0, 1}

balance(v) = −1 means v is left-heavy
balance(v) = +1 means v is right-heavy

Need to store at each node v the height of the subtree rooted at it(
There are ways to implement AVL-trees where we only store balance(v),
so fewer bits. But the code gets more complicated (no details).

)

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 9 / 30

AVL Trees

Introduced by Adel’son-Vel’skĭı and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.

Rephrase: If node v has left subtree L and right subtree R, then

balance(v) := height(R)− height(L) must be in {−1, 0, 1}

balance(v) = −1 means v is left-heavy
balance(v) = +1 means v is right-heavy

Need to store at each node v the height of the subtree rooted at it(
There are ways to implement AVL-trees where we only store balance(v),
so fewer bits. But the code gets more complicated (no details).

)

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 9 / 30

AVL tree example

(The lower numbers indicate the height of the subtree.)

22
4

10
3

4
1

6
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 10 / 30

AVL tree example

Alternative: store balance (instead of height) at each node.

22
-1

10
+1

4
+1

6
0

14
+1

13
0

18
-1

16
0

31
+1

28
0

37
+1

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 11 / 30

Height of an AVL tree
Theorem: An AVL tree on n nodes has Θ(log n) height.
⇒ search, BST::insert, BST::delete all cost Θ(log n) in the worst case!

Proof:
Define N(h) to be the least number of nodes in a height-h AVL tree.
What is a recurrence relation for N(h)?
What does this recurrence relation resolve to?

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 12 / 30

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024

AVL insertion

To perform AVL::insert(k, v):
First, insert (k, v) with the usual BST insertion.

We assume that this returns the new leaf z where the key was stored.

Then, move up the tree from z .(
We assume for this that we have parent-links. This can be
avoided if BST::insert returns the full path to z .

)
Update height (easy to do in constant time):

setHeightFromSubtrees(u)
1. u.height ← 1 + max{u.left.height, u.right.height}

If the height difference becomes ±2 at node z , then z is unbalanced.
Must re-structure the tree to rebalance.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 13 / 30

AVL Insertion Example
Example: AVL::insert(8)

22
4

10
3

4
1

6
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 14 / 30

AVL Insertion Example
Example: AVL::insert(8)

22
4?

10
3?

4
1?

6
0?

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 14 / 30

AVL Insertion Example
Example: AVL::insert(8)

22
4?

10
3?

4
1?

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 14 / 30

AVL Insertion Example
Example: AVL::insert(8)

22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 14 / 30

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024

Changing structure without changing order

Note: There are many different BSTs with the same keys.

20

A

40

30

B C

D

20

A

30

B

40

C D

30

20

A B

40

C D

40

30

20

A B

C

D

40

20

A

30

B C

D

Goal: Change the structure locally nodes without changing the order .

Longterm goal: Restructure such the subtree becomes balanced.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 15 / 30

Right Rotation
This is a right rotation on node z :

z

c

g

A B

C

D

c

g

A B

z

C D

rotate-right(z)
1. c ← z .left, z .left p← c.right, c.right p← z
2. setHeightFromSubtrees(z), setHeightFromSubtrees(c)
3. return c // returns new root of subtree

(Notation p← means ‘also change parent-reference of right-hand-side’)
M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 16 / 30

Why do we call this a rotation?

z

c

g

A B

C

D

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 17 / 30

Why do we call this a rotation?

c

g

A B

C

z

D

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 17 / 30

Why do we call this a rotation?

c

g

A B

z

C D

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 17 / 30

Left Rotation

Symmetrically, this is a left rotation on node z :

z

A

c

B

g

C D

c

z

A B

g

C D

Again, only two links need to be changed and two heights updated.
Useful to fix right-right imbalance.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 18 / 30

Double Right Rotation

This is a double right rotation on node z :

z

c

A

g

B C

D

z

g

c

A B

C

D

g

c

A B

z

C D

First, a left rotation at c.

Second, a right rotation at z .

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 19 / 30

Double Right Rotation

This is a double right rotation on node z :

z

c

A

g

B C

D

z

g

c

A B

C

D

g

c

A B

z

C D

First, a left rotation at c.
Second, a right rotation at z .

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 19 / 30

Double Left Rotation

Symmetrically, there is a double left rotation on node z :

z

A

c

g

B C

D

g

z

A B

c

C D

First, a right rotation at c.
Second, a left rotation at z .

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 20 / 30

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024

AVL Insertion Example revisited
Example: AVL::insert(8)

22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 21 / 30

AVL insertion revisited

Imbalance at z : do (single or double) rotation
Choose c as child where subtree has bigger height.

AVL::insert(k, v)
1. z ← BST::insert(k, v) // leaf where k is now stored

2. while (z is not NULL)
3. if (|z .left.height − z .right.height| > 1) then
4. Let c be taller child of z
5. Let g be taller child of c (so grandchild of z)
6. restructure(g , c, z) // see later
7. break // can argue that we are done
8. setHeightFromSubtrees(z)
9. z ← z .parent

Can argue: For insertion one rotation restores all heights of subtrees.
⇒ No further imbalances, can stop checking.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 22 / 30

Fixing a slightly-unbalanced AVL tree
restructure(g , c, z)
node g is child of c which is child of z
1. p ← z .parent // save for later

2. case

left

z

c

g

: :
// Right rotation
u ← rotate-right(z)

z

c

g

: : // Double-right rotation
z .left p← rotate-left(c)
u ← rotate-right(z)

z

c

g

: : // Double-left rotation
z .right p← rotate-right(c)
u ← rotate-left(z)

z

c

g

: : // Left rotation
u ← rotate-left(z)

3. make u the appropriate child of p and return u

Rule: The middle key of g , c, z becomes the new root.
M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 23 / 30

AVL Insertion Example revisited

Example: AVL::insert(8)
22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 24 / 30

AVL Insertion Example revisited

Example: AVL::insert(8)
22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 24 / 30

AVL Insertion: Second example
Example: AVL::insert(45)

22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 25 / 30

AVL Insertion: Second example
Example: AVL::insert(45)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

37
1?

46
0?

45
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 25 / 30

AVL Insertion: Second example
Example: AVL::insert(45)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

37
1?

46
1

45
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 25 / 30

AVL Insertion: Second example
Example: AVL::insert(45)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

37
1?

46
1

45
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 25 / 30

AVL Insertion: Second example
Example: AVL::insert(45)

22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

45
1

37
0

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 25 / 30

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024

AVL Deletion
Remove the key k with BST::delete.
Find node where structural change happened.

(This is not necessarily near the node that had k.)
Go back up to root, update heights, and rotate if needed.

AVL::delete(k)
1. z ← BST::delete(k)
2. // Assume z is the parent of the BST node that was removed
3. while (z is not NULL)
4. if (|z .left.height − z .right.height| > 1) then
5. Let c be taller child of z
6. Let g be taller child of c (break ties to avoid double rotation)
7. z ← restructure(g , c, z)
8. // Always continue up the path
9. setHeightFromSubtrees(z)
10. z ← z .parent

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 26 / 30

AVL Deletion Example

Example: AVL::delete(22)
22
4

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A single restructure is not enough to restore all balances.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 27 / 30

AVL Deletion Example

Example: AVL::delete(22)
22
4

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A single restructure is not enough to restore all balances.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 27 / 30

AVL Deletion Example

Example: AVL::delete(22)
28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2?

37
1

46
0

A single restructure is not enough to restore all balances.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 27 / 30

AVL Deletion Example

Example: AVL::delete(22)
28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2?

37
1

46
0

A single restructure is not enough to restore all balances.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 27 / 30

AVL Deletion Example

Example: AVL::delete(22)
28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

37
1

31
0

46
0

A single restructure is not enough to restore all balances.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 27 / 30

AVL Deletion Example

Example: AVL::delete(22) (cont’d)
28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

37
1

31
0

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 28 / 30

AVL Deletion Example

Example: AVL::delete(22) (cont’d)
10
4

6
2

4
1

2
0

8
0

28
3

14
2

13
0

18
1

16
0

37
1

31
0

46
0

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 28 / 30

AVL Deletion Example
Important: Ties must be broken to avoid double rotation.
Consider again the above example. If we applied double-rotation:

28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

37
1

31
0

46
0

Resulting tree is not an AVL-tree.
Violation is below where we check further.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 29 / 30

AVL Deletion Example
Important: Ties must be broken to avoid double rotation.
Consider again the above example. If we applied double-rotation:

14
4

10
3

6
2

4
1

2
0

8
0

13
0

28
2

18
1

16
0

37
1

31
0

46
0

Resulting tree is not an AVL-tree.
Violation is below where we check further.

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 29 / 30

AVL Tree Summary

search: Just like in BSTs, costs Θ(height)

insert: BST::insert, then check & update along path to new leaf
total cost Θ(height)
restructure will be called at most once.

delete: BST::delete, then check & update along path to deleted node
total cost Θ(height)
restructure may be called Θ(height) times.

Worst-case cost for all operations is Θ(height) = Θ(log n).

In practice, the constant is quite large.
Other realizations of ADT Dictionary are better in practice (→ later)

M. Petrick, É. Schost (CS-UW) CS240 – Module 4 Spring 2024 30 / 30

	Dictionaries and Balanced Search Trees
	ADT Dictionary
	ADT Dictionary (review)
	Elementary Realizations (review)
	Binary Search (review)

	Binary Search Trees
	Binary Search Trees (review)
	BST as realization of ADT Dictionary (review)
	Deletion in a BST
	Height of a BST

	AVL Trees
	AVL Trees
	AVL tree example
	AVL tree example
	Height of an AVL tree

	Insertion in AVL Trees
	AVL insertion
	AVL Insertion Example

	Restructuring a BST: Rotations
	Changing structure without changing order
	Right Rotation
	Why do we call this a rotation?
	Left Rotation
	Double Right Rotation
	Double Left Rotation

	AVL insertion revisited
	AVL Insertion Example revisited
	AVL insertion revisited
	Fixing a slightly-unbalanced AVL tree
	AVL Insertion Example revisited
	AVL Insertion: Second example

	Deletion in AVL Trees
	AVL Deletion
	AVL Deletion Example
	AVL Deletion Example
	AVL Deletion Example
	AVL Tree Summary

