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Average-case analysis
We will introduce (and solve) a new problem, and then analyze the
average-case run-time of our algorithm.

Recall definition of average-case run-time:

T avg
A (n) =

∑
instance I of size n

TA(I) ·
(
relative frequency of I

)
For this module:

Assume that the set In of size-n instances is finite
(or can be mapped to a finite set in a natural way)
Assume that all instances occur equally frequently

Then we can use the following simplified formula

T avg(n) =
∑

I:size(I)=n T (I)
#instances of size n = 1

|In|
∑
I∈In

T (I)

To learn how to analyze this, we will do simpler examples first.
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A simple (contrived) example
silly-test(π, n)
π: a permutation of {0, . . . , n−1}, stored as an array
1. if π[0] = 0 then for j = 1 to n do print ‘bad case’
2. else print ‘good case’

T avg(n) = 1
n!

∑
π∈Πn

T (π) = 1
n!

( ∑
π∈Πn

in bad case

T (π) +
∑

π∈Πn
in good case

T (π)
)

(n − 1)! permutations have π[0] = 0 ⇒ run-time c · n
The remaining n!− (n − 1)! permutations have run-time c.

(for some constant c > 0)

T avg(n) = 1
n!

(
#{π ∈ Πn in bad case} · cn + #{π ∈ Πn in good case} · c

)
= 1

n!
(
(n − 1)! · cn + (n!− (n − 1)!) · c

)
≤ 1

ncn + c = 2c ∈ O(1)
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A second (not-so-contrived) example

all-0-test(w , n)
// test whether all entries of bitstring w [0..n−1] are 0
1. if (n = 0) return true
2. if (w [n−1] = 1) return false
3. all-0-test(w , n−1)

(In real life, you would write this non-recursive.)

Define T (w) = # bit-comparisons (i.e., line 2) on input w . This is
asymptotically the same as the run-time.

Worst-case run-time: Always go into the recursion until n = 0.
T (n) = 1 + T (n−1) = 1 + 1 + · · ·+ T (0) = n ∈ Θ(n).

Best-case run-time: Return immediately. T (n) = 1 ∈ Θ(1).

Average-case run-time?
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Average-case run-time of all-0-test
Recall T avg(n) = 1

|Bn|
∑

w∈Bn

T (w). (Bn = {bitstrings of length n})

Recursive formula for one non-empty bitstring w :

T (w) =
{

1 if w [n−1] = 1
1 + T (w [0..n−2]︸ ︷︷ ︸

length n−1

) otherwise

Natural guess for the recursive formula for T avg(n):

T avg(n) = 1
2︸︷︷︸

half have
w [n−1]=1

·1 + 1
2︸︷︷︸

half have
w [n−1]=0

(1 + T ???(n−1))

This holds with ≤ (but is useless) if ‘???’ is ‘worst’.
This is not obvious if ‘???’ is ‘avg’.
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Average-case run-time of all-0-test

T avg (n) = 1
|Bn|

∑
w∈Bn

T (w)

= 1
|Bn|

∑
w∈Bn

w [n−1]=1

1 + 1
|Bn|

∑
w∈Bn

w [n−1]=0

(
1 + T (w [0..n−2])

)

= 1
2 + 1

2 + 1
|Bn|

∑
w∈Bn

w [n−1]=0

T (w [0..n−2])

= 1 + 1
|Bn|

∑
w ′∈Bn−1

T (w ′)

= 1 + |Bn−1|
|Bn|

1
|Bn−1|

∑
w ′∈Bn−1

T (w ′) = 1 + 1
2T avg (n − 1)

This recursion resolves to T avg(n) ∈ O(1).
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Average-case analysis and recursions
Why can’t we always write ‘avg’ for ‘???’ in T avg (n) = 1 + 1

2 T ???(n−1) ?

Consider the following (contrived) example:

silly-all-0-test(w , n)
w : array of size at least n that stores bits
1. if (n = 0) then return true
2. if (w [n−1] = 1) then return false
3. if (n > 1) then w [n−2]← 0 // this is the only change
4. silly-all-0-test(w , n−1)

Only one more line of code in each recursion

But observe that now T (w) =
{

1 if w [n−1] = 1
n if w [n−1] = 0

.

So T avg(n) = 1
2 + n

2 ∈ Θ(n). The ‘obvious’ recursion did not hold.

Average-case analysis is highly non-trivial for recursive algorithms.
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The Selection Problem

We saw Selection: Given an array A of n numbers, and 0 ≤ k < n, find
the element that would be at position k of the sorted array.

30
0

60
1

10
2

0
3

50
4

80
5

90
6

10
7

40
8

70
9

select(3) should return 30.

Selection can be done with heaps in time Θ(n + k log n) (module 2), or
even Θ(n + k log k) (non-trivial exercise).

Special case: MedianFinding = Selection with k =
⌊n

2
⌋
. With

previous approaches, this takes time Θ(n log n), no better than sorting.

Question: Can we do selection in linear time?
Yes! We will develop algorithm quick-select below.

The encountered sub-routines will also be useful otherwise.
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Crucial Subroutines

quick-select and the related quick-sort rely on two subroutines:

choose-pivot(A): Return an index p in A. We will use the
pivot-value v ← A[p] to rearrange the array.

▶ For now simply use p = A.size−1, so v is rightmost item
▶ We will consider more sophisticated ideas later on.

partition(A, p): Rearrange A and return pivot-index i so that
▶ the pivot-value v is in A[i ],
▶ all items in A[0, . . . , i−1] are ≤ v , and
▶ all items in A[i+1, . . . , n−1] are ≥ v .

A ≤ v ≥ vv
i

p = index of pivot-value before partition (we choose it)
i = index of pivot-value after partition (no control)
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Partition Algorithm
Conceptually easy linear-time implementation:

partition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n
1. Create empty lists smaller, equal and larger.
2. v ← A[p]
3. for each element x in A do
4. if x < v then smaller.append(x)
5. else if x > v then larger.append(x)
6. else equal.append(x).
7. i ← smaller .size
8. j ← equal .size
9. Overwrite A[0 . . . i−1] by elements in smaller
10. Overwrite A[i . . . i+j−1] by elements in equal
11. Overwrite A[i+j . . . n−1] by elements in larger
12. return i

More challenging: partition in place (with O(1) auxiliary space).
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Efficient In-Place partition (Hoare) - Example
Idea: Keep swapping the outer-most wrongly-positioned pairs.

i=-1
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Efficient In-Place partition (Hoare)
Loop invariant: A ≤ v ≥ v v?

i j n−1

partition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n
1. swap(A[n−1], A[p])
2. i ← −1, j ← n−1, v ← A[n−1]
3. loop
4. do i ← i+1 while A[i ] < v
5. do j ← j−1 while j > i and A[j] > v
6. if i ≥ j then break (goto 9)
7. else swap(A[i ], A[j])
8. end loop
9. swap(A[n−1], A[i ])
10. return i

Running time: Θ(n).
Observe: n key-comparisons (comparing two input-items).
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quick-select Algorithm
Selection: Want item m such that (after rearranging A) we have

≤ m ≥ mm
k

quick-select(A, k)
A: array of size n, k: integer s.t. 0 ≤ k < n
1. p ← choose-pivot(A)
2. i ← partition(A, p)
3. if i = k then return A[i ]
4. else if i > k then return quick-select(A[0 . . . i−1], k)
5. else if i < k then return quick-select(A[i+1 . . . n−1], k − (i+1))

Idea: After partition have

Where is m if k = i? If k < i? If k > i?

≤ v ≥ vv
i
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Analysis of quick-select
Let T (A, k) be the number of key-comparisons in a size-n array A with
parameter k. (This is asymptotically the same as the run-time.)

partition uses n key-comparisons.

Worst-case run-time:
Sub-array always gets smaller, so ≤ n recursions.
Each takes ≤ n comparisons ⇒ O(n2) time.
This is tight: If pivot-value is always the maximum and k = 0
T worst(n, 0) ≥ n + (n−1) + (n−2) + · · ·+ 1 ∈ Ω(n2)

Best-case run-time: First chosen pivot could be the kth element
No recursive calls; T best(n, k) = n ∈ Θ(n)

Average case analysis? Doing this directly would be very complicated.
Instead we will do it via a detour into a randomized version.
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Outline

3 Sorting, Average-case and Randomization
Analyzing average-case run-time
Selection and quick-select
Randomized Algorithms
quick-select revisited
Sorting and quick-sort
Lower Bound for Comparison-Based Sorting
Non-Comparison-Based Sorting
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Randomized algorithms

A randomized algorithm is one which relies on some random
numbers in addition to the input.

▶ Doing randomization is often a good idea if an algorithm has bad
worst-case time but seems to perform much better on most instances.

▶ It can also (with restrictions) be used to bound the avg-case run-time.

The run-time will depend on the input and the random numbers used. Computers cannot generate randomness. We assume that there exists a
pseudo-random number generator (PRNG), a deterministic program that uses
an initial value or seed to generate a sequence of seemingly random numbers.
The quality of randomized algorithms depends on the quality of the PRNG!


Goal: Shift the dependency of run-time from what we can’t control
(the input) to what we can control (the random numbers).

No more bad instances, just unlucky numbers.
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Example (again very contrived)

randomized-all-0-test(w , n)
w : array of size at least n that stores bits
1. if n = 0 return true
2. if (random(2)=0) then

w [n−1] = 1− w [n−1] // this is the only change
3. if w [n−1] = 1 return false
4. randomized-all-0-test(w , n−1)

This is all-0-test, except that we flip last bit based on a coin toss.

We assume the existence of a function random(n) that returns an integer
uniformly from {0, 1, 2, . . . , n−1}. So Pr(random(2) = 0) = 1

2 .

In each recursion, we use the outcome x ∈ {0, 1} of one coin toss.
We return without recursing if x = w [n−1] (this has probability 1

2).
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Expected run-time
The run-time of the algorithm now depends on the random numbers.

Define TA(I, R) to be the run-time of a randomized algorithm A for an
instance I and the sequence R of outcomes of random trials.

The expected run-time T exp(I) for instance I is the expected value:

T exp(I) = E[T (I, R)] =
∑
R

T (I, R) · Pr(R)

Now take the maximum over all instances of size n to define the expected
run-time (or formally: worst-instance expected-luck run-time) of A.

T exp(n) := max
I∈In

T exp(I)

We can still have good luck or bad luck, so occasionally we also discuss
the very worst that could happen, i.e., maxI maxR T (I, R).
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Expected run-time of randomized-all-0-test
Define T (w , R) := # bit-comparisons used on input w if the random
outcomes are R. (This is proportional to the run-time.)

The random outcomes R consist of two parts R = ⟨x , R ′⟩:
▶ x : outcome of first coin toss
▶ R ′: random outcomes (if any) for the recursions

We have Pr(R) = Pr(x) · Pr(R ′) (random choices are independent).

Recursive formula for one instance:

T (w , R) = T (w , ⟨x , R ′⟩) =
{

1 if x = w [n−1]
1 + T (w [0..n−2], R ′) otherwise

Natural guess for the recursive formula for T exp(n):

T exp(n)= 1
2︸︷︷︸

Pr(x=w [n−1])

·1+ 1
2︸︷︷︸

Pr(x ̸=w [n−1])

(1+T exp(n−1)) = 1+ 1
2T exp(n−1)
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Expected run-time of randomized-all-0-test
In contrast to average-case analysis, the natural guess usually is correct for
the expected run-time.

Proof for randomized-all-0-test:

T exp(w) =
∑
R

Pr(R)T (w , R) =

∑
x

∑
R′

Pr(x) Pr(R ′)T (w , ⟨x , R ′⟩)

= Pr(x=w [n−1])
∑

R′ Pr(R ′) · 1

+Pr(x ̸=w [n−1])
∑

R′ Pr(R ′)
(
1+T (w [0..n−2], R ′)

)
= 1

2 + 1
2 + 1

2
∑

R′ Pr(R ′) · T (w [0..n−2], R ′)︸ ︷︷ ︸
T exp(some instance of size n−1)

≤ 1 + 1
2 max

w ′∈Bn−1
T exp(w ′) = 1 + 1

2T exp(n−1) holds for all w

Therefore T exp(n) = max
w∈Bn

T exp(w) ≤ 1 + 1
2T exp(n−1)
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2T exp(n−1) holds for all w

Therefore T exp(n) = max
w∈Bn

T exp(w) ≤ 1 + 1
2T exp(n−1)
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Expected run-time of randomized-all-0-test

We had T exp
rand-all-0-test(n) ≤ 1 + 1

2T exp
rand-all-0-test(n−1)

We earlier had T avg
all-0-test(n) ≤ 1 + 1

2T avg
all-0-test(n−1)

Same recursion ⇒ same upper bound ⇒ T exp
rand-all-0-test(n) ∈ O(1).

Recall: randomized-all-0-test was very similar to all-0-test
(The only different was a random bitflip.)

Is it a coincidence that the two recursive formulas are the same?
Or does the expected time of a randomized version always have
something to do with the average-case time?

Not in general! (It depends how we randomize.)
Yes if the randomization is a shuffle (choose instance randomly).
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Avg-case run-time via expected run-time
Consider the following randomization of a deterministic algorithm A.

shuffled-A(n)
1. Among all instances In of size n for A, choose I randomly
2. A(I)

(shuffled-A usually does not solve what A solves)

If we do not count the time for line 1:

T avg
A (n) = 1

|In|
∑
I∈In

T (I) =
∑
I∈In

Pr(I chosen) · T (I) = T exp
shuffled-A(n)

So the average-case run-time of A is the same as this run-time of A
on randomly chosen input.

This gives us a different way to compute T avg
A (n).
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Avg-case run-time via expected run-time
Example: all-0-test (rephrased with for-loops):

shuffled-all-0-test(n)
1. for (i = n−1; i ≥ 0; i--) do
2. w [i ]← random(2)
3. for (i = n−1; i ≥ 0; i--) do
4. if (w [i ] = 1) return false
5. return true

randomized-all-0-test(w , n)
1. for (i = n−1; i ≥ 0; i--) do
2. if (random(2)=0) then

w [i ] = 1− w [i ]
3. if (w [i ] = 1) return false
4. return true

These algorithms are not quite the same.
▶ Randomization outside resp. inside the for-loop.

But this does not matter for the expected number of bit-comparisons.
▶ Either way, at time of comparison the bit is 1 with probability 1

2 .

So T avg
all-0-test(n) = T exp

shuffled-all-0-test(n) = T exp
rand-all-0-test(n) ∈ O(1)

can be deduced without analyzing T avg
all-0-test(n) directly.
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Summary: Average-case run-time vs. expected run-time
So: are average-case run-time and expected run-time the same?

No!

average-case run-time expected run-time

1
|In|

∑
I∈In

T (I) max
I∈In

∑
outcomes R

Pr(R) · T (I, R)

average over
instances

weighted average over
random outcomes

(usually) applied to a
deterministic algorithm

applied only to a
randomized algorithm

There is a relationship only if the randomization effectively achieves
‘choose the input instance randomly’.
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Average-case analysis of quick-select

Recall quick-select (with choose-pivot(A) = n − 1):

quick-select(A, k)
1. i ← partition(A, n−1)
2. if i = k then return A[i ]
3. else if i > k then quick-select(A[0 . . . i−1], k)
4. else if i < k then quick-select(A[i+1 . . . n−1], k − (i+1))

For analyzing the average-case run-time, we make two assumptions:
All input-items are distinct.

▶ This can be forced using tie-breakers.
All possible orders of the input-items occur equally often.

▶ This is not completely realistic (mostly-sorted orders are more
common).

▶ But we cannot do average-case analysis without it.
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Randomizing quick-select: Shuffling

Goal: Create a randomized version of quick-select.
This will give a proof of the avg-case run-time of quick-select.
This will be a better algorithm in practice.

First idea: Shuffle the input, then do quick-select.

shuffled-quick-select(A, k)
1. for (j ← 1 to n−1) do swap( A[j], A[random(j+1)] ) // shuffle
2. quick-select(A, k)

Shuffling (permuting) the input-array is (by assumption) equivalent to
randomly choosing an input instance.
So we know T avg

quick-select(n) = T exp
shuffled-quick-select(n)

(Recall: T (·) counts key-comparisons, so shuffling is free.)
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Randomizing quick-select: Random Pivot

Second idea: Do the shuffling inside the recursion.
(Equivalently: Randomly choose which value is used for the pivot.)

randomized-quick-select(A, k)
1. swap A[n−1] with A[random(n)]
2. i ← partition(A, n−1)
3. if i = k then return A[i ]
4. else if i > k then
5. return randomized-quick-select(A[0 . . . i−1], k)
6. else if i < k then
7. return randomized-quick-select(A[i+1 . . . n−1], k − (i+1))

T exp
rand.-quick-select(n) = T exp

shuffled-quick-select(n).

(This is not completely obvious, but believable. No proof.)
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Expected run-time of randomized-quick-select

Let T (A, k, R) = # key-comparisons of randomized-quick-select on input
⟨A, k⟩ if the random outcomes are R. (This is proportional to the run-time.)

Write random outcomes R as R = ⟨i , R ′⟩ (where ‘i ’ stands for ‘the
first random number was such that the pivot-index is i ’)
Observe: Pr(pivot-index is i) = 1

n
We recurse in an array of size i or n−i−1 (or not at all)

Recursive formula for one instance (and fixed R = ⟨i , R ′⟩):

T (A, k, ⟨i , R ′⟩) = n +


T ( size-i array , k, R ′) if i > k
T ( size-(n−i−1) array , k−i−1, R ′) if i < k
0 otherwise
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Analysis of randomized-quick-select
As for rand-all-0-test: over all R, the recursions can use T exp(array-size).

T exp(A, k)


=
∑
R

P(R) · T (⟨A, k⟩, R) =
n−1∑
i=0

∑
R′

P(i) · P(R ′) · T (⟨A, k⟩, ⟨i , R ′⟩)

= 1
n

k−1∑
i=0

∑
R′

P(R ′)
(
n + T (⟨A[i+1..n−1], k−i−1⟩, R ′)

)
+ 1

n · n︸ ︷︷ ︸
i=k

+1
n

n−1∑
i=k+1

∑
R′

P(R ′)
(
n + T (⟨A[0..i−1, k⟩, R ′)

)

= n + 1
n

k−1∑
i=0

∑
R′

P(R ′)T (⟨A[i+1..n−1], k−i−1⟩, R ′)

+ 1
n

n−1∑
i=k+1

∑
R′

P(R ′)T (⟨A[0..i−1, k⟩, R ′)

= n + 1
n

k−1∑
i=0

T exp(⟨A[i+1..n−1], k−i−1⟩)︸ ︷︷ ︸
≤T exp(n−i−1)

+1
n

n−1∑
i=k+1

T exp(⟨A[0..i−1], k⟩)︸ ︷︷ ︸
≤T exp(i)

 te
di

ou
s

bu
t

st
ra

ig
ht

fo
rw

ar
d

≤ n + 1
n

n−1∑
i=0

max{T exp(i), T exp(n−i−1)} independent of A, k
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Analysis of randomized-quick-select

In summary, the expected run-time of randomized-quick-select satisfies:

T exp(n) ≤ n + 1
n

n−1∑
i=0

max{T exp(i), T exp(n−i−1)}

Claim: This recursion resolves to O(n).
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Summary of Selection

randomized-quick-select has expected run-time Θ(n).
▶ The run-time bound is tight since partition takes Ω(n) time
▶ If we’re unlucky in the random numbers then the run-time is still Ω(n2)

So the expected run-time of shuffled-quick-select is Θ(n).
So the run-time of quick-select on randomly chosen input is Θ(n).
So the average-case run-time of quick-select is Θ(n).

randomized-quick-select is generally the fastest solution to
Selection.

There exists a variation that solves Selection with worst-case
run-time Θ(n), but it uses double recursion and is slower in practice.
(→ cs341, maybe)
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quick-sort
Hoare developed partition and quick-select in 1960.
He also used them to sort based on partitioning:

quick-sort(A)
A: array of size n
1. if n ≤ 1 then return
2. p ← choose-pivot(A)
3. i ← partition(A, p)
4. quick-sort(A[0, 1, . . . , i−1])
5. quick-sort(A[i+1, . . . , n−1])

≤ v ≥ vv
i

correct
placesort recursively sort recursively

sorted
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quick-sort analysis

Set T (A) := # of key-comparison for quick-sort in array A.

Worst-case run-time: Θ(n2)
Sub-arrays get smaller ⇒ ≤ n levels of recursions
On each level there are ≤ n items in total ⇒ ≤ n key-comparisons
So run-time in O(n2); this is tight exactly as for quick-select

Best-case run-time: Θ(n log n)
If pivot-index is always in the middle, then we recurse in two
sub-arrays of size ≤ n/2.
T (n) ≤ n + 2T (n/2) ∈ O(n log n) exactly as for merge-sort
This can be shown to be tight.

Average-case run-time? We again prove this via randomization.
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Randomizing quick-sort

randomized-quick-sort(A)
1. if n ≤ 1 then return
2. p ← random(n)
3. i ← partition(A, p)
4. randomized-quick-sort(A[0, 1, . . . , i−1])
5. randomized-quick-sort(A[i+1, . . . , n−1])

Observe: Pr(pivot has index i) = 1
n

Assume the random output was such that the pivot-index is i :
We use n comparisons in partition.
We recurse in two arrays, of size i and n−i−1

This implies

T exp(n) = . . . = . . . ≤ . . .︸ ︷︷ ︸
long but straightforward

= n + 1
n

n−1∑
i=0

(
T exp(i)+T exp(n−i−1)

)
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Expected run-time of randomized-quick-sort

T exp(n) ≤ n + 1
n

n−1∑
i=0

(
T exp(i)+T exp(n−i−1)

)
= n+2

n

n−1∑
i=1

T exp(i)

(since T (0) = 0)
Claim: T exp(n) ∈ O(n log n).
Proof:
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Summary of quick-sort
randomized-quick-sort has expected run-time Θ(n log n).

▶ The run-time bound is tight since the best-case run-time is Ω(n log n)
▶ If we’re unlucky in the random numbers then the run-time is still Ω(n2)

Can show: This has the same expected run-time as quick-sort on
randomly chosen input (no details)
So the average-case run-time of quick-sort is Θ(n log n).

Auxiliary space?
▶ Each nested recursion-call requires Θ(1) space on the call stack.
▶ As described, quick-sort/randomized-quick-sort use Ω(n) nested

recursion-calls in the worst case.
▶ So Θ(n) auxiliary space (can be improved to Θ(log n))

There are numerous tricks to improve randomized-quick-sort
With these, this is in practice the fastest solution to Sorting
(but not in theory).
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quick-sort with tricks

randomized-quick-sort-improved(A, n)
1. Initialize a stack S of index-pairs with { (0, n−1) }
2. while S is not empty
3. (ℓ, r)← S.pop()
4. while (r−ℓ+1 > 10) do
5. p ← ℓ + random(ℓ−r+1)
6. i ← partition(A, ℓ, r , p)
7. if (i−ℓ > r−i) do
8. S.push( (ℓ, i−1) )
9. ℓ← i+1
10. else
11. S.push( (i+1, r) )
12. r ← i−1
13. insertion-sort(A)
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Outline

3 Sorting, Average-case and Randomization
Analyzing average-case run-time
Selection and quick-select
Randomized Algorithms
quick-select revisited
Sorting and quick-sort
Lower Bound for Comparison-Based Sorting
Non-Comparison-Based Sorting
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Lower bounds for sorting
We have seen many sorting algorithms:

Sort Running time Analysis
selection-sort Θ(n2) worst-case
insertion-sort Θ(n2) worst-case

Θ(n) best-case
merge-sort Θ(n log n) worst-case
heap-sort Θ(n log n) worst-case
quick-sort Θ(n log n) average-case
randomized-quick-sort Θ(n log n) expected

Question: Can one do better than Θ(n log n) running time?
Answer: Yes and no! It depends on what we allow .

No: Comparison-based sorting lower bound is Ω(n log n).
Yes: Non-comparison-based sorting can achieve O(n) (under
restrictions!). (→ later)
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Lower bound for sorting in the comparison model
All algorithms so far are comparison-based: Data is accessed only by

comparing two elements (a key-comparison)
moving elements around (e.g. copying, swapping)

Theorem. Any comparison-based sorting algorithm requires in the worst
case Ω(n log n) comparisons to sort n distinct items.
Proof.
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Decision trees
Any comparison-based algorithms can be expressed as decision tree.

x0 : x1

x1 : x2 x1 : x2

x0 : x2 x0 : x20,1,2 2,1,0

0,2,1 2,0,1 1,0,2 1,2,0

To sort {x0, x1, x2}:

Example: {x0=4, x1=2, x2=7}

{4, 2, 7}

{4, 2, 7}

{4, 2, 7}
Output: {4, 2, 7} has sorting permutation ⟨1, 0, 2⟩

(i.e., x1=2 ≤ x0=4 ≤ x2=7)

< ≥

< ≥

< ≥

≥<

< ≥
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Non-Comparison-Based Sorting

Assume keys are numbers in base R (R: radix)
▶ So all digits are in {0, . . . , R−1}
▶ R = 2, 10, 128, 256 are the most common, but R need not be constant

Example (R = 4): 123 230 21 320 210 232 101

Assume all keys have the same number m of digits.
▶ Can achieve after padding with leading 0s.
▶ In typical computers, m = 32 or m = 64, but m need not be constant

Example (R = 4): 123 230 021 320 210 232 101

Can sort based on individual digits.
▶ How to sort 1-digit numbers?
▶ How to sort multi-digit numbers based on this?
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(Single-digit) bucket-sort

Sort array A by last digit:

A B A
12 3⃝ B[0]

→ 230 → 320 → 210 230

23 0⃝ B[1]

→ 021 → 101 320

02 1⃝ B[2]

→ 232 210

32 0⃝ =⇒ B[3]

→ 123

=⇒

021

21 0⃝

101

23 2⃝

232

10 1⃝

123
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(Single-digit) bucket-sort

bucket-sort(A, n, sort-key(·))
A: array of size n
sort-key(·) : maps items of A to {0, . . . , R−1}
1. Initialize an array B[0...R − 1] of empty queues (buckets)
2. for i ← 0 to n−1 do
3. Append A[i ] at end of B[sort-key(A[i ])]
4. i ← 0
5. for j ← 0 to R − 1 do
6. while B[j] is non-empty do
7. move front element of B[j] to A[i++]

In our example sort-key(A[i ]) returns the last digit of A[i ]

bucket-sort is stable: equal items stay in original order.
Run-time Θ(n + R), auxiliary space Θ(n + R)
It is possible to replace the lists by arrays ⇝ count-sort (no details).
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Most-significant-digit(MSD)-radix-sort

Sort array of m-digit radix-R numbers recursively:
sort by 1st digit, then each group by 2nd digit, etc.

1⃝23
2⃝32
0⃝21
3⃝20
2⃝10
2⃝30
1⃝01

021

1 2⃝3
1 0⃝1

101

123
2 3⃝2
2 1⃝0
2 3⃝0

210
23 2⃝
23 0⃝

230

232320

(d = 1) (d = 2) (d = 3)
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MSD-radix-sort

MSD-radix-sort(A, n, d ← 1)
A: array of size n, contains m-digit radix-R numbers
1. if (d ≤ m and (n > 1))
2. bucket-sort(A, n,‘return dth digit of A[i ]’)
3. ℓ← 0 // find sub-arrays and recurse
4. for j ← 0 to R − 1
5. Let r ≥ ℓ− 1 be maximal s.t. A[ℓ..r ] have dth digit j
6. MSD-radix-sort(A[ℓ..r ], r−ℓ+1, d+1)
7. ℓ← r + 1

Analysis:
Θ(m) levels of recursion in worst-case.
Θ(n) subproblems on most levels in worst-case.
Θ(R + (size of sub-array)) time for each bucket-sort call.

⇒ Run-time Θ(mnR) — slow. Many recursions and allocated arrays.
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Least-significant-digit(LSD)-radix-sort

LSD-radix-sort(A, n)
A: array of size n, contains m-digit radix-R numbers
1. for d ← least significant to most significant digit do
2. bucket-sort(A, n, ‘return dth digit of A[i ]’)

12 3⃝ 2 3⃝0 1⃝01 021
23 0⃝ 3 2⃝0 2⃝10 101
02 1⃝ (d = 3) 2 1⃝0 (d = 2) 3⃝20 (d = 1) 123
32 0⃝ =⇒ 0 2⃝1 =⇒ 0⃝21 =⇒ 210
21 0⃝ 1 0⃝1 1⃝23 230
23 2⃝ 2 3⃝2 2⃝30 232
10 1⃝ 1 2⃝3 2⃝32 320

Loop-invariant: A is sorted w.r.t. digits d , . . . , m of each entry.
Time cost: Θ(m(n + R)) Auxiliary space: Θ(n + R)
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Summary

Sorting is an important and very well-studied problem
Can be done in Θ(n log n) time; faster is not possible for general input
heap-sort is the only Θ(n log n)-time algorithm we have seen with
O(1) auxiliary space.
merge-sort is also Θ(n log n), selection & insertion sorts are Θ(n2).
quick-sort is worst-case Θ(n2), but often the fastest in practice
bucket-sort and radix-sort achieve o(n log n) if the input is special

Randomized algorithms can eliminate “bad cases”
Best-case, worst-case, average-case can all differ.
Often it is easier to analyze the run-time on randomly chosen input
rather than the average-case run-time.
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