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Abstract Data Types (review)

Abstract Data Type (ADT): A description of information and a
collection of operations on that information.

The information is accessed only through the operations.

We can have various realizations of an ADT, which specify:
How the information is stored (data structure)
How the operations are performed (algorithms)
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ADT Stack (review)

Stack: an ADT consisting of a collection of items with operations:

push: Add an item to the stack.
pop: Remove and return the most recently added item.

Items are removed in LIFO (last-in first-out) order.

We can have extra operations: size, is-empty, and top

ADT Stack can easily be realized using arrays or linked lists such that
operations take constant time, up to resizing arrays (exercise).
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ADT Queue (review)

Queue: an ADT consisting of a collection of items with operations:

enqueue (or append or add-back): Add an item
to the queue.
dequeue (or remove-front): Remove and return
the least recently inserted item.

Items are removed in FIFO (first-in first-out) order.

We can have extra operations: size, is-empty, and peek/front

ADT Queue can easily be realized using (circular) arrays or linked lists
such that operations take constant time, up to resizing arrays (exercise).
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ADT Priority Queue

Priority Queue generalizes both ADT Stack and ADT Queue.

It is a collection of items (each having a priority or key) with operations
insert: inserting an item tagged with a priority
delete-max: removing and returning an item of highest priority.

We can have extra operations: size, is-empty, and get-max

This is a maximum-oriented priority queue. A minimum-oriented
priority queue replaces operation delete-max by delete-min.

Applications:
How would you simulate a stack with a priority queue?
How would you simulate a queue with a priority queue?
Other applications: typical todo-list, simulation systems, sorting

M. Petrick, É. Schost (CS-UW) CS240 – Module 2 Spring 2024 5 / 29



Using a Priority Queue to Sort

PQ-Sort(A[0..n − 1])
1. initialize PQ to an empty priority queue
2. for i ← 0 to n − 1 do
3. PQ.insert(an item with priority A[i ])
4. for i ← n − 1 down to 0 do
5. A[i ]← priority of PQ.delete-max()

Note: run-time depends on how we implement the priority queue.
Sometimes written as: O(initialization + n · insert + n · delete-max)
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Realizations of Priority Queues

Realization 1: unsorted arrays 12
0

99
1

37
2 3 4

( In our examples we only show the priorities, and we show them directly in
the node. A more accurate picture would be priority = 12, <other info>•

)

Run-time of operations:
insert: Θ(1)
delete-max: Θ(n)

Note: We assume dynamic arrays, i. e., expand by doubling as needed.
(Amortized over all insertions this takes Θ(1) extra time.)

PQ-sort with this realization yields selection-sort.
Using unsorted linked lists is identical.
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Realizations of Priority Queues

Realization 2: sorted arrays 12
0

37
1

99
2 3 4

Run-time of operations:
insert: Θ(n)
delete-max: Θ(1)

PQ-sort with this realization yields insertion-sort.
Using sorted linked lists is identical.

Main advantage:
insert can be implemented to have Θ(1) best-case run-time (how?)
insertion-sort then has Θ(n) best-case run-time
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Towards Realization 3: Heaps

A (binary) heap is a certain type of binary tree.

You should know:
A binary tree is either

▶ empty, or
▶ consists of three parts:

a node and two binary trees (left subtree and right subtree).
Terminology: root, leaf, parent, child, level, sibling, ancestor,
descendant, etc.
Level ℓ = all nodes with distance ℓ from the root. Root is on level 0.
Height h = maximum number for which level h contains nodes.
Single-node tree has height 0, empty tree has height −1.
Known: Any binary tree with height h has n ≤ 2h+1 − 1 nodes.

So height h ≥ log(n + 1)− 1 ∈ Ω(log n).
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Example Binary Tree and Heap

Binary tree with
1 structural property and

2 heap-order property.

Recall: 15 represents
priority = 15, <other info>•
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Example Binary Tree and Heap

50

29

27

23 26

15

47

8 20

Binary tree with
1 structural property and
2 heap-order property.

Recall: 15 represents
priority = 15, <other info>•
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Heaps – Definition

A heap is a binary tree with the following two properties:

1 Structural Property: All the levels of a heap are completely filled,
except (possibly) for the last level. The filled items in the last level
are left-justified .

2 Heap-order Property: For any node i , the key of the parent of i is
larger than or equal to key of i .

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is Θ(log n).
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Storing Heaps in Arrays

Heaps should not be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in
A[0] and continue with elements level-by-level from top to bottom, in each
level left-to-right.

50A[0]

29A[1]

27A[3]

23A[7] 26 A[8]

15 A[4]

47 A[2]

8A[5] 20 A[6]

0 1 2 3 4 5 6 7 8
A: 50 29 47 27 15 8 20 23 26
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Heaps in Arrays – Navigation

It is easy to navigate the heap using this array representation:
the root node is at index 0
(We use “node” and “index” interchangeably in this implementation.)
the last node is n − 1 (where n is the size)
the left child of node i (if it exists) is node 2i + 1
the right child of node i (if it exists) is node 2i + 2
the parent of node i (if it exists) is node ⌊ i−1

2 ⌋
these nodes exist if the index falls in the range {0, . . . , n−1}

We should hide implementation details using helper-functions!
functions root(), last(), parent(i), etc.

Some of these helper-functions need to know the size n. We assume that
the data structure stores this explicitly.

M. Petrick, É. Schost (CS-UW) CS240 – Module 2 Spring 2024 13 / 29



Heaps in Arrays – Navigation

It is easy to navigate the heap using this array representation:
the root node is at index 0
(We use “node” and “index” interchangeably in this implementation.)
the last node is n − 1 (where n is the size)
the left child of node i (if it exists) is node 2i + 1
the right child of node i (if it exists) is node 2i + 2
the parent of node i (if it exists) is node ⌊ i−1

2 ⌋
these nodes exist if the index falls in the range {0, . . . , n−1}

We should hide implementation details using helper-functions!
functions root(), last(), parent(i), etc.

Some of these helper-functions need to know the size n. We assume that
the data structure stores this explicitly.

M. Petrick, É. Schost (CS-UW) CS240 – Module 2 Spring 2024 13 / 29



Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

M. Petrick, É. Schost (CS-UW) CS240 – Module 2 Spring 2024



insert in Heaps
insert(35):

50

29

27

23 26

15

47

8 20

By structural property: no choice where the new node can go.

This may or may not lead to heap-order violations.
Fix violations by “bubbling up” in the tree.
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Insert in Heaps
Place the new key at the first free leaf
Use fix-up to restore heap-order.

insert(x)
1. ℓ← last()+1
2. A[ℓ]← x // assume dynamic array used
3. increase size // size: stored by PQ
4. fix-up(A, ℓ)

fix-up(A, i)
i : an index corresponding to a node of the heap
1. while parent(i) exists and A[parent(i)].key < A[i ].key do
2. swap A[i ] and A[parent(i)]
3. i ← parent(i)

Time: O(height of heap) = O(log n) (and this is tight).
(Correctness may seem obvious, but is actually non-trivial.)
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delete-max in Heaps

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

fix-down(A, i)
A: an array that stores a heap of size n
i: an index corresponding to a node of the heap
1. while i is not a leaf do
2. j ← left child of i // Find the child with the larger key
3. if (i has right child and A[right child of i ].key > A[j].key)
4. j ← right child of i
5. if A[i ].key ≥ A[j].key break
6. swap A[j] and A[i ]
7. i ← j

Time: O(height of heap) = O(log n) (and this is tight).
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delete-max example
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delete-max example
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Priority Queue Realization Using Heaps

delete-max()
1. ℓ← last()
2. swap A[root()] and A[ℓ]
3. decrease size
4. fix-down(A, root(), size)
5. return A[ℓ]

Time: O(height of heap) = O(log n) (and this is tight).

Binary heap are a realization of priority queues where the operations insert
and delete-max take Θ(log n) time.
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Sorting using heaps
Recall: Any priority queue can be used to sort in time

O(initialization + n · insert + n · delete-max)

Using the binary-heaps implementation of PQs, we obtain:
PQ-sort-with-heaps(A)
1. initialize H to an empty heap
2. for i ← 0 to n − 1 do
3. H.insert(A[i ])
4. for i ← n − 1 down to 0 do
5. A[i ]← H.delete-max()

both operations run in O(log n) time for heaps
⇝ PQ-sort using heaps takes O(n log n) time (and this is tight).

Can improve this with two simple tricks → heap-sort
1 Can use the same array for input and heap. ⇝ O(1) auxiliary space!
2 Heaps can be built faster if we know all input in advance.
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Building Heaps with fix-up
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simple-heap-building(A)
A: an array
1. initialize H as an empty heap
2. for i ← 0 to A.size()− 1 do
3. H.insert(A[i ])

This corresponds to doing fix-ups
Worst-case running time: O(n log n) (and this is tight).
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Building Heaps with fix-down
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n← A.size()
2. for i ← parent(last()) downto root() do
3. fix-down(A, i , n)

A careful analysis yields a worst-case complexity of Θ(n).
A heap can be built in linear time.
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heapify example

A : 10
0

80
1

50
2

30
3

20
4

60
5

10
6

40
7

70
8

Corresponding tree:
10

80

30

40 70

20

50

60 10
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Efficient sorting with heaps

Idea: PQ-sort with heaps.
O(1) auxiliary space: Use same input-array A for storing heap.

heap-sort(A)
1. // heapify
2. n← A.size()
3. for i ← parent(last()) downto 0 do
4. fix-down(A, i , n)

5. // repeatedly find maximum
6. while n > 1
7. // ‘delete’ maximum by moving to end and decreasing n
8. swap items at A[root()] and A[last()]
9. decrease n
10. fix-down(A, root(), n)

The for-loop takes Θ(n) time and the while-loop takes Θ(n log n) time.
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heap-sort example

Continue with the example from heapify:
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The array (i.e., the heap in level-by-level order) is now in sorted order.
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heap-sort example
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heap-sort example
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heap-sort example
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heap-sort example
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heap-sort example

Continue with the example from heapify:
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Heap summary

Binary heap: A binary tree that satisfies structural property and
heap-order property.
Heaps are one possible realization of ADT PriorityQueue:

▶ insert takes time O(log n)
▶ delete-max takes time O(log n)
▶ Also supports findMax in time O(1)

A binary heap can be built in linear time.
PQ-sort with binary heaps leads to a sorting algorithm with O(n log n)
worst-case run-time (⇝ heap-sort)
We have seen here the max-oriented version of heaps (the maximum
priority is at the root).
There exists a symmetric min-oriented version that supports insert
and delete-min with the same run-times.
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Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Binary Heaps as PQ realization
PQ-sort and heap-sort
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Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.

(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

M. Petrick, É. Schost (CS-UW) CS240 – Module 2 Spring 2024 29 / 29



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.

(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k (?) passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

M. Petrick, É. Schost (CS-UW) CS240 – Module 2 Spring 2024 29 / 29



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

M. Petrick, É. Schost (CS-UW) CS240 – Module 2 Spring 2024 29 / 29



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

M. Petrick, É. Schost (CS-UW) CS240 – Module 2 Spring 2024 29 / 29



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

M. Petrick, É. Schost (CS-UW) CS240 – Module 2 Spring 2024 29 / 29



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

M. Petrick, É. Schost (CS-UW) CS240 – Module 2 Spring 2024 29 / 29


	Priority Queues
	Abstract Data Types
	Abstract Data Types (review)
	ADT Stack (review)
	ADT Queue (review)

	ADT Priority Queue
	ADT Priority Queue
	Using a Priority Queue to Sort
	Realizations of Priority Queues
	Realizations of Priority Queues

	Binary Heaps
	Towards Realization 3: Heaps
	Example Binary Tree and Heap
	Heaps – Definition
	Storing Heaps in Arrays
	Heaps in Arrays – Navigation

	Binary Heaps as PQ realization
	insert in Heaps
	Insert in Heaps
	delete-max in Heaps
	delete-max example
	Priority Queue Realization Using Heaps

	PQ-sort and heap-sort
	Sorting using heaps
	Building Heaps with fix-up 
	Building Heaps with fix-down 
	Proof continued...
	Proof continued...
	Proof continued...
	heapify example
	Efficient sorting with heaps
	heap-sort example
	Heap summary

	Towards the Selection Problem
	Finding the smallest items



