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Course Objectives: What is this course about?

Much of Computer Science is problem solving : Write a program that
converts the given input to the expected output.

When first learning to program, we emphasize correctness: does your
program output the expected results?

Starting with this course, we will also be concerned with efficiency : is
your program using the computer’s resources (typically processor
time) efficiently?

We will study efficient methods of storing , accessing , and organizing
large collections of data.

Motivating examples: Digital Music Collection, English Dictionary

Typical operations include: inserting new data items, deleting data
items, searching for specific data items, sorting .
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Course Objectives: What is this course about?

We will consider various abstract data types (ADTs) and how to
realize them efficiently using appropriate data structures.

We will some problems in data management (sorting, pattern
matching, compression) and how to solve them with efficient
algorithms.

There is a strong emphasis on mathematical analysis in the course.

Algorithms are presented using pseudo-code and analyzed using order
notation (big-Oh, etc.).
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Course Topics

1 background, big-Oh analysis
2 priority queues and heaps
3 efficient sorting, selection
4 binary search trees, AVL trees
5 skip lists
6 tries
7 hashing
8 quadtrees, kd-trees, range search
9 string matching
10 data compression
11 external memory

1 module ≈ 1 week per topic.
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CS Background

Topics covered in previous courses:

arrays, linked lists
strings
stacks, queues
abstract data types
recursive algorithms
binary trees
basic sorting
binary search
binary search trees

Most are briefly reviewed in course notes, or consult any textbook
(e.g. [Sedgewick,CLRS]).
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Useful Math Facts
Logarithms:

y = logb(x) means by = x . e.g. n = 2log n.
log(x) (in this course) means log2(x)
log(x · y) = log(x)+ log(y), log(xy ) = y log(x), log(x) ≤ x
logb(a) = logc a

logc b = 1
loga(b) , alogb c = c logb a

ln(x) = natural log = loge(x), d
dx ln x = 1

x
Factorial:

n! := n(n − 1)(n − 2) · · · · 2 · 1 = # ways to permute n elements
log(n!) = log n + log(n − 1) + · · ·+ log 2 + log 1 ∈ Θ(n log n)

(We will define Θ soon.)

Probability:
E [X ] is the expected value of X .
E [aX ] = aE [X ], E [X + Y ] = E [X ] + E [Y ] (linearity of expectation)
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Useful Sums

Arithmetic sequence:∑n−1
i=0 i = ???

Geometric sequence:∑n−1
i=0 2i = ???

Harmonic sequence:∑n
i=1

1
i = ???

A few more:∑n
i=1

i
2i = ???∑n

i=1 ik = ???
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Useful Sums
Arithmetic sequence:∑n−1

i=0 i = (n−1)n
2

∑n−1
i=0 (a + di) = na + dn(n−1)

2 ∈ Θ(n2) if d ̸= 0.

Geometric sequence:

∑n−1
i=0 2i = 2n − 1

∑n−1
i=0 a r i =


a rn − 1

r − 1 ∈ Θ(rn−1) if r > 1
na ∈ Θ(n) if r = 1

a1− rn

1− r ∈ Θ(1) if 0 < r < 1.
Harmonic sequence:∑n

i=1
1
i = ??? Hn :=

∑n
i=1

1
i = ln n + γ + o(1) ∈ Θ(log n)

A few more:∑n
i=1

i
2i = ???

∑n
i=1

i
2i ∈ Θ(1)∑n

i=1 ik = ???
∑n

i=1 ik ∈ Θ(nk+1) for k ≥ 0
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Algorithms and Problems (review)
Let us clarify a few more terms:

Problem: Description of possible input and desired output. Example:
Sorting problem.

Problem Instance: One possible input for the specified problem.

Algorithm: Step-by-step process (can be described in finite length) for
carrying out a series of computations, given an arbitrary instance I.

Solving a problem: An Algorithm A solves a problem Π if, for every
instance I of Π, A computes a valid output for the instance I in finite time.

Program: A program is an implementation of an algorithm using a
specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or
programming). We do not use any particular computer language to
describe them.
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Algorithms and Programs

Pseudocode: communicate an algorithm to another person.

In contrast, a program communicates an algorithm to a computer.

insertion-sort(A, n)
A: array of size n
1. for (i ← 1; i < n; i++) do
2. for (j ← i ; j > 0 and A[j−1] > A[j]; j--) do
3. swap A[j] and A[j − 1]

sometimes uses English descriptions, e.g. ‘swap’,
omits obvious details, e.g. i is usually an integer
has limited if any error detection, e.g. A is assumed initialized
should be precise about exit-conditions, e.g. in loops
should use good indentation and variable-names
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Algorithms and Programs

From problem Π to program that solves it:

1 Design an algorithm A that solves Π. → Algorithm Design
A problem Π may have several algorithms. Design many!

2 Assess correctness and efficiency of each A. → Algorithm Analysis
Correctness → CS245 (here informal arguments are enough).
Efficiency → later

3 If acceptable (correct and efficient), implement algorithm(s).
For each algorithm, we can have several implementations.

4 If multiple acceptable algorithms/implementations, run experiments
to determine best solution.

CS240 focuses on the first two steps.
The main point is to avoid implementing obviously-bad algorithms.

M. Petrick, É. Schost (CS-UW) CS240 – Module 1 Spring 2024 10 / 44



Outline

1 Introduction and Asymptotic Analysis
CS240 Overview
Algorithm Design
Analysis of Algorithms I
Asymptotic Notation
Rules for asymptotic notation
Analysis of Algorithms II
Example: Design and Analysis of merge-sort

M. Petrick, É. Schost (CS-UW) CS240 – Module 1 Spring 2024



Efficiency of Algorithms/Programs (Review)

What do we mean by ‘efficiency’?

In this course, we are primarily concerned with the amount of time a
program takes to run. → Running Time
We also may be interested in the amount of additional memory the
program requires. → Auxiliary space
The amount of time and/or memory required by a program will
usually depend on the given problem instance.
So we express the time or memory requirements as a mathematical
function of the instances (e.g. T (I))
But then aggregate over all instances In of size n (e.g. T (n)).
Do we take max, min, avg? (→ later)
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Measuring Efficiency of Algorithms/Programs (Review)

What do we count as running time/space usage of an algorithm?

First option: experimental studies

Write a program implementing the algorithm.
Run the program with inputs of varying size and composition and
measure time and space.
Plot/compare the results.

There are numerous shortcomings:
Implementation may be complicated/costly.
Outcomes are affected by many factors: hardware (processor,
memory), software environment (OS, compiler, programming
language), and human factors (programmer).
We cannot test all instances; what are good sample inputs?
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Running Time of Algorithms/Programs

Better: theoretical analysis:
Does not require implementing the algorithm (we work on
pseudo-code).
Is independent of the hardware/software environment (we work on an
idealized computer model).
Takes into account all input instances.

This is the approach taken in CS240.

We use experimental results only if theoretical analysis yields no useful
results for deciding between multiple algorithms.
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Random Access Machine (RAM) model

Central processing unit (CPU)

random access (equally fast to all cells)

. . .
memory cells – size unbounded

Each memory cell stores one (finite-length) datum, typically a
number, character, or reference.
Assumption: cells are big enough to hold the items that we store.
Any access to a memory location takes constant time.
(We will revisit this assumption late in the course.)
Any primitive operation takes constant time.
(Add, subtract, multiply, divide, follow a reference, ...)
Not primitive:

√
n, anything involving irrational numbers

These assumptions may not be valid for a “real” computer.
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Running Time and Space
With this computer model, we can now formally define:

The running time is the number of memory accesses plus the
number of primitive operations.
The space is the maximum number of memory cells ever in use.
Size(I) of instance I is the number of memory cells that I occupies.

The real-life time and space is proportional to this.

We compare algorithms by considering the growth rate: What is the
behaviour of algorithms as size n gets large?

Example 1: What is larger, 100n or 10n2?

Example 2 (Matrix multiplication, approximately): What is
larger: 4n3, 300n2.807, or 1067n2.373?

To simplify comparisons, use order notation (big-O and friends).
Informally: ignore constants and lower order terms
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Order Notation
Study relationships between functions.

Example: f (x) = 75x + 500 and g(x) = 5x2 (e.g. c = 1, n0 = 20)

x

y

1000
2000
3000

5 10 15 20 25 30n0

g(x) = 5x2

f (x) = 75x + 500

O-notation: f (x) ∈ O(g(x)) (f is asymptotically upper-bounded by g) if
there exist constants c > 0 and n0 ≥ 0 s.t. |f (x)| ≤ c |g(x)| for all x ≥ n0.

In CS240: Parameter is usually an integer (write n rather than x).
f (n), g(n) usually positive for sufficiently big n (omit absolute value signs).
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Example 1: Order Notation

In order to prove that 2n2 + 3n + 11 ∈ O(n2) from first principles (i.e.,
directly from the definition), we need to find c and n0 such that the
following condition is satisfied:

2n2 + 3n + 11 ≤ c n2 for all n ≥ n0.

Many, but not all, choices of c and n0 will work.
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Aymptotic Lower Bound
We have 2n2 + 3n + 11 ∈ O(n2).
But we also have 2n2 + 3n + 11 ∈ O(n10).
We want a tight asymptotic bound.

Ω-notation: f (x) ∈ Ω(g(x)) (f is asymptotically lower-bounded by g) if
there exist constants c > 0 and n0 ≥ 0 s.t. c |g(x)| ≤ |f (x)| for all x ≥ n0.
Example: Prove that f (n) = 2n2 + 3n + 11 ∈ Ω(n2) from first principles.

Example: Prove that 1
2n2 − 5n ∈ Ω(n2) from first principles.
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Aymptotic Tight Bound

Θ-notation: f (x) ∈ Θ(g(x)) (f is asymptotically tightly-bounded by g) if
there exist constants c1, c2 > 0 and n0 ≥ 0 such that

c1 |g(x)| ≤ |f (x)| ≤ c2 |g(x)| for all x ≥ n0.

Equivalently: f (n) ∈ Θ(g(n))⇔ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

We also say that the growth rates of f and g are the same. Typically, f (x)
may be “complicated” and g(x) is chosen to be a very simple function.

Example: Prove that logb(n) ∈ Θ(log n) for all b > 1 from first principles.
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Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the
following:

Θ(1) (constant),
Θ(log n) (logarithmic),
Θ(n) (linear),
Θ(n log n)(linearithmic),
Θ(n logk n), for some constant k (quasi-linear),
Θ(n2) (quadratic),
Θ(n3) (cubic),
Θ(2n) (exponential).

These are sorted in increasing order of growth rate.

How do we define ‘increasing order of growth rate’?
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How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c

⇝ T (2n) = c.

logarithmic complexity: T (n) = c log n

⇝ T (2n) = T (n) + c.

linear complexity: T (n) = cn

⇝ T (2n) = 2T (n).

linearithmic Θ(n log n): T (n) = c n log n

⇝ T (2n) = 2T (n) + 2cn.

quadratic complexity: T (n) = c n2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c 2n

⇝ T (2n) = (T (n))2/c.
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Strictly smaller asymptotic bounds
We have f (n) = n ∈ Θ(n).
How to express that f (n) grows slower than n2?

x

y g(x) = x2 1
2 · g(x) 1

4 · g(x)

f (x) = x

o-notation: f (x) ∈ o(g(x)) (f is asymptotically strictly smaller than g) if
for all constants c > 0, there exists a constant n0 ≥ 0 such that
|f (x)| ≤ c |g(x)| for all x ≥ n0.

M. Petrick, É. Schost (CS-UW) CS240 – Module 1 Spring 2024 22 / 44



Strictly smaller/larger asymptotic bounds
Example: Prove that n ∈ o(n2) from first principles.

Main difference between o and O is the quantifier for c.
n0 will depend on c, so it is really a function n0(c).
We also say ‘the growth rate of f is less than the growth rate of g ’.
Rarely proved from first principles (instead use limit-rule ⇝ later).

ω-notation: f (x) ∈ ω(g(x)) (f is asymptotically strictly larger than g) if
for all constants c > 0, there exists a constant n0 ≥ 0 such that
|f (x)| ≥ c |g(x)| for all x ≥ n0.

Symmetric, the growth rate of f is more than the growth rate of g .
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The Limit Rule

Suppose that f (n) > 0 and g(n) > 0 for all n ≥ n0. Suppose that

L = lim
n→∞

f (n)
g(n) (in particular, the limit exists).

Then

f (n) ∈
{

o(g(n)) if L = 0
Θ(g(n)) if 0 < L <∞

If the fraction goes towards ∞ then f (n) ∈ ω(g(n)).

Note that this result gives sufficient (but not necessary) conditions for the
stated conclusion to hold.

The required limit may be computed using l’Hôpital’s rule.
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Application 1: Logarithms vs. polynomials

Compare the growth rates of f (n) = log n and g(n) = n.

Now compare the growth rates of f (n) = (log n)c and g(n) = nd (where
c > 0 and d > 0 are arbitrary numbers).
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Application 2: Polynomials
Let f (n) be a polynomial of degree d ≥ 0:

f (n) = cdnd + cd−1nd−1 + · · ·+ c1n + c0

for some cd > 0.

Then f (n) ∈ Θ(nd):
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Example: Oscillating functions
Consider two oscillating functions f1, f2 for which limn→∞

fi (n)
n does not

exist. Are they in Θ(n)?

n

y f1(n) = n(1 + sin xπ/2)

2n

n

y f2(n) = n(2 + sin nπ/2)
3n

n

So no limit ⇝ must use other methods to prove asymptotic bounds.
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Order Notation Summary

O-notation: f (x) ∈ O(g(x)) if there exist constants c > 0 and n0 ≥ 0
such that |f (x)| ≤ c |g(x)| for all x ≥ n0.

Ω-notation: f (x) ∈ Ω(g(x)) if there exist constants c > 0 and n0 ≥ 0
such that c |g(x)| ≤ |f (x)| for all x ≥ n0.

Θ-notation: f (x) ∈ Θ(g(x)) if there exist constants c1, c2 > 0 and
n0 ≥ 0 such that c1 |g(x)| ≤ |f (x)| ≤ c2 |g(x)| for all x ≥ n0.

o-notation: f (x) ∈ o(g(x)) if for all constants c > 0, there exists a
constant n0 ≥ 0 such that |f (x)| ≤ c |g(x)| for all x ≥ n0.

ω-notation: f (x) ∈ ω(g(x)) if for all constants c > 0, there exists a
constant n0 ≥ 0 such that c |g(x)| ≤ |f (x)| for all x ≥ n0.
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Algebra of Order Notations
Many rules are easily proved from first principle (exercise).

Identity rule: f (n) ∈ Θ(f (n))

Transitivity:
If f (n) ∈ O(g(n)) and g(n) ∈ O(h(n)) then f (n) ∈ O(h(n)).
If f (n) ∈ Ω(g(n)) and g(n) ∈ Ω(h(n)) then f (n) ∈ Ω(h(n)).
If f (n) ∈ O(g(n)) and g(n) ∈ o(h(n)) then f (n) ∈ o(h(n)).
...

Maximum rules: Suppose that f (n) > 0 and g(n) > 0 for all n ≥ n0.
Then:

f (n) + g(n) ∈ O(max{f (n), g(n)})
f (n) + g(n) ∈ Ω(max{f (n), g(n)})

Key proof-ingredient: max{f (n), g(n)} ≤ f (n)+g(n) ≤ 2 max{f (n), g(n)}
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Relationships between Order Notations

f (n) ∈ Θ(g(n))⇔ g(n) ∈ Θ(f (n))
f (n) ∈ O(g(n))⇔ g(n) ∈ Ω(f (n))
f (n) ∈ o(g(n))⇔ g(n) ∈ ω(f (n))

f (n) ∈ Θ(g(n))⇔ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))
f (n) ∈ o(g(n))⇒ f (n) ∈ O(g(n))
f (n) ∈ o(g(n))⇒ f (n) ̸∈ Ω(g(n))
f (n) ∈ ω(g(n))⇒ f (n) ∈ Ω(g(n))
f (n) ∈ ω(g(n))⇒ f (n) ̸∈ O(g(n))

Example: Fill the following table with TRUE or FALSE:
Is f (n) ∈ . . . (g(n))?

f (n) g(n) o O Ω ω

log n
√

n
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Abuse of Notation

Normally, we say f (n) ∈ Θ(g(n)) because Θ(g(n)) is a set.

Avoid doing arithmetic with asymptotic notations—it can go badly
wrong Do not write O(n) + O(n) = O(n).

(CS136 allowed you to be sloppy here. CS240 does not.)

Instead, when you do arithmetic, replace ‘Θ(f (n))’ by ‘c · f (n) for
some constant c > 0’

(That’s still a bit sloppy (why?), but less dangerous.)

There are some (very limited) exceptions:

▶ f (n) = n2 + Θ(n)

means “f (n) is n2 plus a linear term”
⋆ nicer to read than “n2 + n + log n”
⋆ more precise about constants than “O(n2)”

▶ But use this very sparingly (typically only for stating the final result)
▶ Similarly f (n) = n2 + o(1) means “n2 plus a vanishing term.”
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Techniques for Run-time Analysis
Goal: Use asymptotic notation to simplify run-time analysis.
Running time of an algorithm depends on the input size n.

print-pairs(A, n)
1. for i ← 0 to n − 1 do
2. for j ← 0 to i − 1 do
3. print ‘the next pair is {A[i ], A[j]}’

Identify primitive operations that require Θ(1) time.
(For doing arithmetic, assume they require c time for some c > 0.)
The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.
Nested loops: start with the innermost loop and proceed outwards.
This gives nested summations.

For print-pairs: The run-time is
∑n−1

i=0
∑i−1

j=0 c.
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Techniques for Run-time Analysis
Two general strategies are as follows.

Strategy I: Use Θ-bounds throughout the analysis and obtain a Θ-bound
for the complexity of the algorithm.
For print-pairs:

Strategy II: Prove a O-bound and a matching Ω-bound separately .
Use upper bounds (for O) and lower bounds (for Ω) early and frequently.
This may be easier because upper/lower bounds are easier to sum.
For print-pairs:
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Complexity of Algorithms

Algorithm can have different running times on two instances of the
same size.

insertion-sort(A, n)
A: array of size n
1. for (i ← 1; i < n; i++) do
2. for (j ← i ; j > 0 and A[j−1] > A[j]; j--) do
3. swap A[j] and A[j − 1]

Let TA(I) denote the running time of an algorithm A on instance I.

Study this value for the worst-possible, best-possible and ‘typical’
(average) instance I.
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Complexity of Algorithms
Worst-case (best-case) complexity of an algorithm: The
worst-case (best-case) running time of an algorithm A is a function
T : Z+ → R mapping n (the input size) to the longest (shortest) running
time for any input instance of size n:

T worst
A (n) = max

I∈In
{TA(I)}

T best
A (n) = min

I∈In
{TA(I)}

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is a function T : Z+ → R mapping n (the input
size) to the average running time of A over all instances of size n:

T avg
A (n) =

∑
I∈In

TA(I) ·
(
relative frequency of I

)
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O-notation and Complexity of Algorithms
Goal in cs240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.

Example: Suppose algorithm A1 has worst-case run-time O(n3) and
algorithm A2 has worst-case run-time O(n2), and both solve the same
problem. Is A2 more efficient?

No! O-notation is an upper bound. A1 may well have worst-case
run-time O(n). We should always give Θ-bounds.
Example: Suppose the run-times are Θ(n3) and Θ(n2), respectively.
We consider A2 to be better. But is it always more efficient?

No! The worst-case run-time of A1 may only be achieved on some
instances. Possibly A1 is better on most instances.

Also, the hidden constants may be so large that A1 is better on all
but unrealistically big n.
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Explaining the solution of a problem

To give an algorithm that ‘solves a problem’, we usually do four steps.
We illustrate this here on merge-sort.

Step 1: Describe the overall idea

Input: Array A of n integers
1 We split A into two subarrays AL and AR that are roughly half as big.

2 Recursively sort AL and AR

3 After AL and AR have been sorted, use a function merge to merge
them into a single sorted array.
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Explaining the solution of a problem
Step 2: Give pseudo-code or detailed description.

merge-sort(A, n)
A: array of size n
1. if (n ≤ 1) then return
2. else
3. m = ⌊(n − 1)/2⌋
4. merge-sort(A[0..m], m + 1)
5. merge-sort(A[m + 1..n−1], r)
6. merge(A[0..m], A[m + 1..n−1])

(pseudo-code for merge to come)

Two tricks to reduce constant in the run-time and auxiliary space:
Do not pass array A by value, instead indicate the range of the array
that needs to be sorted.
merge needs an auxiliary array S. Allocate this only once.
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Explaining the solution of a problem
Step 2: Give pseudo-code or detailed description.

merge-sort(A, n, ℓ← 0, r ← n − 1, S ← NULL)
A: array of size n, 0 ≤ ℓ ≤ r ≤ n − 1
1. if S is NULL do initialize it as array S[0..n − 1]
2. if (r ≤ ℓ) then
3. return
4. else
5. m = ⌊(r + ℓ)/2⌋
6. merge-sort(A, n, ℓ, m, S)
7. merge-sort(A, n, m + 1, r , S)
8. merge(A, ℓ, m, r , S)

This would be much better for an efficient implementation.
But the idea is much harder to understand.
CS240 pseudocode will often prefer clarity over improved constants.
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Sub-routine merge

Idea: Always extract from each sub-array the value that is smaller and
append it to the output.

merge(A, ℓ, m, r , S)
A[0..n − 1] is an array, A[ℓ..m] is sorted, A[m + 1..r ] is sorted
S[0..n − 1] is an array
1. copy A[ℓ..r ] into S[ℓ..r ]
2. (iL, iR)← (ℓ, m + 1); // start-indices of subarrays
3. for (k ← ℓ; k ≤ r ; k++) do // fill-index for result
4. if (iL > m) A[k]← S[iR++]
5. else if (iR > r) A[k]← S[iL++]
6. else if (S[iL] ≤ S[iR ]) A[k]← S[iL++]
7. else A[k]← S[iR++]
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Analysis of merge-sort
Step 3: Argue correctness.

Typically state loop-invariants, or other key-ingredients, but no need
for a formal (CS245-style) proof by induction.
Sometimes obvious enough from idea-description and comments.

Step 4: Analyze the run-time.
First analyze work done outside recursions.
If applicable, analyze subroutines separately.
If there are recursions: how big are the subproblems?
The run-time then becomes a recursive function.

Let T (n) denote the time to run merge-sort on an array of length n.
1 (initialize array) takes time Θ(n)
2 (recursively call merge-sort) takes time T

(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

3 (call merge) takes time Θ(n)
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The run-time of merge-sort
The recurrence relation for T (n) is as follows (constant factor c
replaces Θ):

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ c n if n > 1
c if n = 1.

The following is the corresponding sloppy recurrence
(it has floors and ceilings removed):

T (n) =
{

2 T
(n

2
)

+ cn if n > 1
c if n = 1.

When n is a power of 2, then the exact and sloppy recurrences are
identical and can easily be solved by various methods.
E.g. prove by induction that T (n) = cn log(2n) ∈ Θ(n log n).
It is possible to show that T (n) ∈ Θ(n log n) for all n
by analyzing the exact recurrence.
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Asymptotics and Arithmetic revisited
Recall: You should not intermix asymptotics and arithmetic.

Writing O(n) + O(n) = O(n) is very bad style.
It even occasionally leads to incorrect results.
Example: What is wrong with the following proof?

Claim (false!): If T (n) =
{

2 T
(n

2
)

+ cn if n > 1
c if n = 1.

then T (n) ∈ O(n).

“Proof”: Use induction on n.
In the base case (n = 1) we have T (n) = c ∈ O(1) = O(n).
Assume the claim holds for all n′ with n′ < n.
Step: We have

T (n) = 2T (n
2 ) + cn

IH
∈ 2O(n

2 ) + O(n) = O(n) + O(n) = O(n)
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Some Recurrence Relations

Recursion resolves to example
T (n) ≤ T (n/2) + O(1) T (n) ∈ O(log n) binary-search
T (n) ≤ 2T (n/2) + O(n) T (n) ∈ O(n log n) merge-sort
T (n) ≤ 2T (n/2) + O(log n) T (n) ∈ O(n) heapify (*)
T (n) ≤ cT (n−1) + O(1) T (n) ∈ O(1) avg-case analysis (*)
for some c < 1
T (n) ≤ 2T (n/4) + O(1) T (n) ∈ O(

√
n) range-search (*)

T (n) ≤ T (
√

n) + O(
√

n) T (n) ∈ O(
√

n) interpol. search (*)
T (n) ≤ T (

√
n) + O(1) T (n) ∈ O(log log n) interpol. search (*)

Once you know the result, it is (usually) easy to prove by induction.
These bounds are tight if the upper bounds are tight.
Many more recursions, and some methods to find the result, in CS341.

(*) These may or may not get used later in the course.
M. Petrick, É. Schost (CS-UW) CS240 – Module 1 Spring 2024 44 / 44


	Introduction and Asymptotic Analysis 
	CS240 Overview
	Course Objectives: What is this course about?
	Course Objectives: What is this course about?
	Course Topics
	CS Background
	Useful Math Facts
	Useful Sums

	Algorithm Design
	Algorithms and Problems (review)
	Algorithms and Programs
	Algorithms and Programs

	Analysis of Algorithms I
	Efficiency of Algorithms/Programs (Review)
	Measuring Efficiency of Algorithms/Programs (Review)
	Running Time of Algorithms/Programs
	Random Access Machine (RAM) model
	Running Time and Space

	Asymptotic Notation
	Order Notation
	Example 1: Order Notation
	Aymptotic Lower Bound
	Aymptotic Tight Bound
	Common Growth Rates
	How Growth Rates Affect Running Time
	Strictly smaller asymptotic bounds
	Strictly smaller/larger asymptotic bounds

	Rules for asymptotic notation
	The Limit Rule
	Application 1: Logarithms vs. polynomials
	Application 2: Polynomials
	Example: Oscillating functions
	Order Notation Summary
	Algebra of Order Notations
	Relationships between Order Notations
	Abuse of Notation

	Analysis of Algorithms II
	Techniques for Run-time Analysis
	Techniques for Run-time Analysis
	Complexity of Algorithms
	Complexity of Algorithms
	O-notation and Complexity of Algorithms

	Example: Design and Analysis of merge-sort
	Explaining the solution of a problem
	Explaining the solution of a problem
	Explaining the solution of a problem
	Sub-routine merge
	Analysis of merge-sort
	The run-time of merge-sort
	Asymptotics and Arithmetic revisited
	Some Recurrence Relations



