
Big-O notation
CS135 Lecture 08

1

L08.00 Math class

2

Huh? Why are there no slides?

We treat this module as a traditional math class.

Your instructor will write on the board.

If you work with Accessibility Services. They will have a copy of the notes for you.

3

L08.01 Leveling up

4

List abbreviations

The expression
(cons v1 (cons v2 (... (cons vn empty)...)))

can be abbreviated as
(list v1 v2 … vn)

For example
(cons 4 (cons 3 (cons 2 (cons 1 empty)

can be abbreviated as
(list 4 3 2 1)

To use list abbreviations we have to adjust our language level.

5

Adjusting the language level

6

“Beginning student with List
Abbreviations”

L08.02 Measuring efficiency

7

To measure efficiency, we count substitution steps

(define (len lst)
 (cond [(empty? lst) 0]
 [else (add1 (len (rest lst)))]))

(len empty) ⇒ 4 steps
(len (list 1)) ⇒ 10 steps
(len (list 1 2)) ⇒ 16 steps
(len (list 1 2 3)) ⇒ 22 steps
(len (list 1 2 3 4)) ⇒ 28 steps

If n is the length of the list, number of steps = f(n) = 6n + 4 = O(n)

8

To measure efficiency, we count substitution steps

9

23/28

Efficiency of built-in length vs. our len function

(length empty) ⇒ 1 step
(length (list 1)) ⇒ 1 step
(length (list 1 2)) ⇒ 1 step
(length (list 1 2 3)) ⇒ 1 step
(length (list 1 2 3 4)) ⇒ 1 step

Built-in functions take one step, but you should consider their efficiency to be the
same as if you had written the equivalent function using directly on a list, i.e., you
should consider the built-in length function to be linear in the length of the list.

You can assume that all other currently allowed built-in functions (other than
length) are constant time, i.e., O(1). Future lectures will have other examples.

10

Lecture 8 Summary

11

12

L08: You should know

13

● How categorize the behaviour of functions using “Big-O notation”.
● How to use list abbreviations to write lists.
● How to use the stepper to measure efficiency.

L08: Allowed constructs

Newly allowed constructs:
list

Previously allowed constructs:
() [] + - * / = < > <= >= ;
abs acos add1 and asin atan check-expect check-within cond
cons cons? cos define e else empty empty? exp expt false
first inexact? integer? length list? log max min not number?
or pi quotient rational? remainder rest second sin sqr sqrt
sub1 symbol? symbol=? tan third true zero?
listof Any anyof Bool Int Nat Num Rat Sym

Recursion must follow the Rules of Recursion (second version)

14

