
19: Computing History

The dawn of computation M19 2/42

Babylonian cuneiform circa
2000 B.C. (Photo by Matt Neale)

> Early computation M19 3/42

Euclid’s algorithm circa 300 B.C.

Abu Ja’far Muhammad ibn Musa Al-Khwarizmi’s books on algebra and arithmetic
computation using Indo-Arabic numerals, circa 800 A.D.

Isaac Newton (1643-1727) hired a “computer” to help with his work (e.g. a human
being performing computations)

Katherine Johnson (1918-2020) - "Human computer" who did trajectory analysis for
America’s first human spaceflight (1961).

> Charles Babbage (1791-1871) M19 4/42

Developed mechanical computation for military
applications:

Difference Engine (1819)

Analytical Engine (1834)

The specification of computational operations was
separated from their execution

Babbage’s designs were technically too ambitious

Video of a (modern) working model at
https://www.computerhistory.org/babbage/.

> Babbage’s difference engine M19 5/42

https://www.computerhistory.org/babbage/

> Ada Augusta Byron (1815-1852) M19 6/42

Assisted Babbage in explaining and
promoting his ideas

Wrote articles describing the operation and use of the
Analytical Engine

The first computer scientist?

David Hilbert (1862-1943) M19 7/42

Formalized the axiomatic treatment of Euclidean
geometry

Hilbert’s 23 problems (ICM, 1900)

Problem #2: Is mathematics consistent?

> The meaning of proof M19 8/42

Axiom: A statement accepted without proof. For example, ∀n : n + 0 = n.

Proposition: A statement we’d like to prove. For example, “The square of any even
number is even.”

Formula: A statement expressed with an accepted set of symbols and syntax.
For example, ∀n(∃k : n = k + k ⇒ ∃m : m + m = n ∗ n)

Proof: A finite sequence of axioms (basic true statements) and accepted
derivation rules (e.g. ϕ and ϕ → σ yield σ).

Theorem: A mathematical statement ϕ together with a proof deriving ϕ.

> Hilbert’s questions (1920’s) M19 9/42

Is mathematics complete? Meaning: for any formula ϕ, if ϕ is true, then ϕ is provable.

Is mathematics consistent? Meaning: for any formula ϕ, there aren’t proofs of both ϕ

and ¬ϕ.

Is there a procedure to, given a formula ϕ, produce a proof of ϕ, or show there isn’t
one?

Hilbert believed the answers would be “yes”.

Kurt Gödel (1906-78) M19 10/42

Gödel’s answers to Hilbert (1929-30):

Any axiom system powerful enough to describe
arithmetic on integers is not complete.

If it is consistent, its consistency cannot be proved
within the system.

> Sketch of Gödel’s proof M19 11/42

Define a mapping between logical formulas and numbers.

Use it to define mathematical statements saying “This number represents a valid formula”,
“This number represents a sequence of valid formulae”, “This number represents a valid
proof”, “This number represents a provable formula”.

Construct a formula ϕ represented by a number n that says “The formula represented by n
is not provable”. The formula ϕ cannot be false, so it must be true but not provable.

> What remained of Hilbert’s questions M19 12/42

Is there a procedure which, given a formula ϕ, either proves ϕ, shows it false, or
correctly concludes ϕ is not provable?

The answer to this requires a precise definition of “a procedure”, in other words, a formal
model of computation.

Alonzo Church (1903-1995) M19 13/42

Set out to give a final “no” answer to this last question
With his student Kleene, created notation to describe
functions on the natural numbers.

> Church and Kleene’s notation M19 14/42

They wanted to modify Russell and Whitehead’s notation for the class of all x satisfying a
predicate f : x̂ f (x).

But their notion was somewhat different, so they tried putting the caret before: ˆx .

Their typewriter could not type this, but had Greek letters.

Perhaps a capital lambda? Λx .

Too much like the symbol for logical AND: ∧.

Perhaps a lower-case lambda? λx .

> The lambda calculus M19 15/42

Example
Lambda
calculus Racket

The function that adds 2 to its ar-
gument:

λx .x + 2 (lambda (x) (+ x 2))

The function that subtracts its
second argument from its first:

λx .λy .x − y (lambda (x)
(lambda (y) (- x y)))

Function application: f x (f x)

Function application
(left associativity):

f xy ((f x) y)

> The lambda calculus & simplicity M19 16/42

To prove something is impossible to express in some notation, the notation should be as
simple as possible.

To make things even simpler, the lambda calculus did not permit naming of functions (only
parameters), naming of constants like 2, or naming of functions like +.

It had three grammar rules and one reduction rule (function application).

How could it say anything at all?

> Numbers from nothing (Cantor-style) M19 17/42

0 ≡ ∅ or {} (the empty set)

1 ≡ {∅}

2 ≡ {{∅}, ∅}

In general, n is represented by the set containing the sets representing n − 1,n − 2, . . . ,0.

This is the way that arithmetic can be built up from the basic axioms of set theory.

> Numbers from nothing (Church-style) M19 18/42

0 ≡ λf .λx .x the function which ignores
its argument and returns the
identity function

(lambda (f)
(lambda (x) x))

1 ≡ λf .λx .fx the function which, when
given as argument a function
f , returns the same function

(lambda (f)
(lambda (x) (f x)))

2 ≡ λf .λx .f (fx) the function which, when
given as argument a function
f , returns f composed with it-
self or f ◦ f

(lambda (f)
(lambda (x) (f (f x))))

In general, n is the function which does n-fold composition.

> General model of computation M19 19/42

With some care, one can write down short expressions for the addition and multiplication
functions.

Similar ideas will create Boolean values, logical functions, and conditional expressions.

General recursion without naming is harder, but still possible.

The lambda calculus is a general model of computation.

> Church’s proof M19 20/42

Church proved that there was no computational procedure to tell if two lambda expressions
were equivalent (represented the same function).

His proof mirrored Gödel’s, using a way of encoding lambda expressions using numbers,
and provided a “no” answer to the idea of deciding provability of formulae.

This was published in 1936.

Independently, a few months later, a British mathematician came up with a simpler proof.

Alan Turing (1912-1954) M19 21/42

Turing defined a different model of computation, and
chose a different problem to prove uncomputable.

This resulted in a simpler and more influential proof.

> Turing’s model of computation M19 22/42

;; A Move is one of 'left, 'none, 'right.

;; (f state ch) produces a new state, a character to write on the tape at
;; the current head position, and a head motion
;; f: State Char → State Char Move

...... 1 0 111

Finite state control plus unbounded storage tape

> Turing’s proof (1936) (1/2) M19 23/42

Turing showed how to implement the controller (f) using characters. He gave several
examples, including computing 01010101... and 00101101110111101111101111110....

Turing showed how to encode a function, f, so that it can be placed on the tape along with
its data, x . He then showed how to write a different function, u, so that (u f x) ≡ (f x) (for
any f). He called u “the universal computing machine”.

He then assumed that there was a machine that could process such a description and tell
whether the coded machine would halt (terminate) or not on its input.

Using this machine, one can define a second machine that acts on this information.

> Turing’s proof (1936) (2/2) M19 24/42

The second machine uses the first machine to see if its input represents a coded machine
which halts when fed its own description.

If so, the second machine runs forever; otherwise, it halts.

Feeding the description of the second machine to itself creates a contradiction: it halts iff it
doesn’t halt.

So the first machine cannot exist.

Turing’s proof also demonstrates the undecidability of proving formulae.

> Advantages of Turing’s ideas M19 25/42

Turing’s ideas can be adapted to give a similar proof in the lambda calculus model.

Upon learning of Church’s work, Turing quickly sketched the equivalence of the two models.

Turing’s model bears a closer resemblance to an intuitive idea of real computation.

It would influence the future development of hardware and thus software, even though
reasoning about programs is more difficult in it.

> Other contributions by Turing M19 26/42

Turing went to America to study with Church at Princeton, earning his PhD in 1939.

During World War II, he was instrumental in an effort to break encrypted German radio
traffic. Co-workers developed what we now know to be the world’s first working electronic
computer (Colossus).

Turing made further contributions to hardware and software design in the UK, to the field of
artificial intelligence (the Turing test), and to pattern formation and mathematical biology
before his untimely death in 1954.

John von Neumann (1903-1957) M19 27/42

von Neumann was a founding member of the Institute
for Advanced Study at Princeton.

In 1946 he visited the developers of ENIAC at the
University of Pennsylvania, and wrote an influential
“Report on the EDVAC” regarding its successor.

Features: random-access memory, CPU, fetch-execute
loop, stored program.

Lacking: support for recursion (unlike Turing’s UK
designs)

Grace Murray Hopper (1906-1992) M19 28/42

Wrote the first compiler

Defined first English-like data processing language, FLOW-MATIC, in the mid-1950’s

Many of her ideas were folded into COBOL (1959)

John Backus (1924-2007) and FORTRAN (1957) M19 29/42

FORTRAN, designed by John Backus, was an early
programming language influenced by architecture.

INTEGER FN, FNM1, TEMP

FN = 1

FNM1 = 0

DO 20 I = 1, 10, 1

PRINT 10, I, FN

10 FORMAT(I3, 1X, I3)

TEMP = FN + FNM1

FNM1 = FN

20 FN = TEMP

John Backus (1924-2007) and FORTRAN (1957) M19 30/42

FORTRAN became the dominant language for numerical and scientific computation.
Backus also invented a notation for language description that is popular in programming
language design today.

Backus won the Turing Award in 1978, and used the associated lecture to criticize the
continued dominance of von Neumann’s architectural model and the programming
languages inspired by it.

He proposed a functional programming language for parallel/distributed computation.

An alternative to imperative programming M19 31/42

FORTRAN and COBOL, reflecting the Turing - von Neumann approach, dominated practical
computing through most of the ’60’s and ’70’s.

Many other computer languages were defined, enjoyed brief and modest success, and then
were forgotten. The C programming language is an exception. It was introduced in 1972
and still enjoys widespread use. It is used in CS136.

Church’s work proved useful in the field of operational semantics, which sought to treat the
meaning of programs mathematically.

It also was inspirational in the design of a still-popular high-level programming language
called Lisp.

John McCarthy (1927-2011) M19 32/42

John McCarthy, an AI researcher at MIT, was frustrated
by the inexpressiveness of machine languages and the
primitive programming languages arising from them
(no recursion, no conditional expressions).

In 1958, he designed and implemented Lisp (LISt
Processor), taking ideas from the lambda calculus and
the theory of recursive functions.

> McCarthy’s Lisp M19 33/42

His 1960 paper on Lisp described the core of the language in terms that CS135 students
would recognize.

McCarthy defined these primitive functions: atom (the negation of cons?), eq, car (first),
cdr (rest), and cons.

He also defined the special forms quote, lambda, cond, and label (define).

Using these, he showed how to build many other useful functions.

> The evolution of Lisp M19 34/42

The first implementation of Lisp, on the IBM 704, could fit two machine addresses (15 bits)
into parts of one machine word (36 bits) called the address and decrement parts.

This led to the language terms car (first in Racket) and cdr (rest in Racket), which persist
in Racket and Lisp to this day.

Lisp quickly evolved to include proper numbers, input/output, and a more comprehensive
set of built-in functions.

> The evolution of Lisp M19 35/42

Lisp became the dominant language for artificial intelligence implementations.

It encouraged redefinition and customization of the language environments, leading to a
proliferation of implementations.

It also challenged memory capabilities of 1970’s computers, and some special-purpose
“Lisp machines” were built.

Modern hardware is up to the task, and the major Lisp groups met and agreed on the
Common Lisp standard in the 1980’s.

> Beyond Lisp M19 36/42

Starting about 1976, Carl Hewitt, Gerald Sussman, Guy Steele, and others created a series
of research languages called Planner, Conniver, and Schemer (except that “Schemer” was
too long for their computer’s filesystem, so it got shortened to “Scheme”).

Research groups at other universities began using Scheme to study programming
languages.

Sussman, together with colleague Hal Abelson, started using Scheme in the undergraduate
program at MIT. Their textbook, “Structure and Interpretation of Computer Programs” (SICP)
is considered a classic.

> Beyond Lisp M19 37/42

The authors of the “How to Design Programs” textbook that formed the basis for CS135
developed an extension of Scheme (PLT Scheme) and its learning environment (DrScheme)
to remedy the following perceived deficiencies of SICP:

lack of programming methodology

complex domain knowledge required

steep, frustrating learning curve

insufficient preparation for future courses

As PLT Scheme and the teaching languages diverged further from Sussman and Steele’s
Scheme, they renamed their language Racket in 2010.

Imperative and functional convergence? M19 38/42

Languages are becoming more multi-paradigm, allowing programmers to think and code in
the programming style that best suits their particular problem.

Some languages that started as primarily imperative or object-oriented are gaining
functional aspects. These include C++, C#, Java, Go, and Python.

“Recently” defined languages are often multi-paradigm from the beginning. These include:

Scala

Kotlin

Ruby

JavaScript

E
x.

1

Using the years of the following computer history events as the keys, draw a Binary
Search Tree that is the result of inserting the following in the order listed:

Design of Babbage’s difference engine

Godel’s incompleteness theorems

Invention of Scheme

Invention of COBOL

Invention of Euclid’s Algorithm

Invention of FORTRAN

Report on the EDVAC

Design of Babbage’s analytical engine

Hilbert’s 23 problems

Invention of LISP

Church’s undecidability theorem

Goals of this module M19 39/42

You should understand that important computing concepts pre-date electronic
computers.

You should understand, at a high level, the contributions of pioneers such as Babbage,
Ada Augusta Byron, Hilbert, Church, Turing, Gödel, and others.

You should understand the relationship between Church’s work and functional
programming as well as the relationship between Turing’s work and imperative
programming.

> Summing up CS135 M19 40/42

With only a few language constructs (define, cond, define-struct, cons, local, lambda) we
have described and implemented ideas from introductory computer science.

We have done so without many of the features (static types, mutation, I/O) that courses
using conventional languages have to introduce on the first day. The ideas we have covered
carry over into languages in more widespread use.

We hope you have been convinced that a goal of computer science is to implement useful
computation in a way that is correct and efficient as far as the machine is concerned, but
that is understandable and extendable as far as humans are concerned.

> Looking ahead to CS136 M19 41/42

These themes will continue in CS136 with additional themes and a new programming
language using a different paradigm.

We have been fortunate to work with very small languages (the teaching languages) writing
very small programs which operate on small amounts of data.

In CS136, we will broaden our scope, moving towards the messy but also rewarding realm
of the “real world”.

> Looking ahead to CS136 M19 42/42

The main theme of CS136 is scalability: what are the issues which arise when things get
bigger, and how do we deal with them?

How do we organize a program that’s bigger than a few screenfuls?
How do we share code between programs?
How do we design programs to run efficiently?
How can we leverage types to discover errors early?
Are there better ways to handle errors?
When is it appropriate to abstract away from implementation details for the sake of the
big picture, and when must we focus on exactly what is happening at lower levels for
the sake of efficiency?

These are issues which arise not just for computer scientists, but for anyone making use of
computation in a working environment.

We can build on what we have learned this term to meet these challenges with confidence.

