
18: Graphs

Directed graphs M18 2/45

A directed graph consists of a collection of
nodes (also called vertices) together with
a collection of edges.

An edge is an ordered pair of nodes, which
we can represent by an arrow from one
node to another.

A

B

C

D

E

F

K H

J

> Directed graphs M18 3/45

We have seen such graphs before.

Binary trees and expression trees were
both directed graphs of a special type
where an edge represented a parent-child
relationship.

Graphs are a general data structure that
can model many situations.

Computations on graphs form an important
part of the computer science toolkit.

A

B

C

D

E

F

K H

J

> Graph terminology M18 4/45

Given an edge (v ,w), we say that w is an
out-neighbour of v , and v is an
in-neighbour of w .

A sequence of nodes v1, v2, . . . , vk is a
path or route of length k − 1 if (v1, v2),
(v2, v3), . . ., (vk−1, vk) are all edges.

If v1 = vk , this is called a cycle.

Directed graphs without cycles are called
DAGs (directed acyclic graphs).

A

B

C

D

E

F

K H

J

Representing graphs M18 5/45

We can represent a node by a symbol (its name), and associate with each node a list of its
out-neighbours.

This is called the adjacency list representation.

More specifically, a graph is a list of pairs, each pair consisting of a symbol (the node’s
name) and a list of symbols (the names of the node’s out-neighbours).

This is very similar to a parent node with a list of children.

> Our example as data M18 6/45

(define g
'((A (C D E))
(B (E J))
(C ())
(D (F J))
(E (K))
(F (K H))
(H ())
(J (H))
(K ()))

)

A

B

C

D

E

F

K H

J

Recall that '(A (B C)) is a more compact way of writing (list 'A (list 'B 'C)). See
M14-25 for a review of quoted lists.

> Data definitions M18 7/45

To make our contracts more descriptive, we will define a Node and a Graph as follows:

;; A Node is a Sym

;; A Graph is one of:
;; * empty
;; * (cons (list v (list w_1 ... w_n)) g)
;; where g is a Graph
;; v, w_1, ... w_n are Nodes
;; v is the in-neighbour to w_1 ... w_n in the Graph
;; v does not appear as an in-neighbour in g

> The template for graphs M18 8/45

;; graph-template: Graph → Any
(define (graph-template g)
(cond
[(empty? g) ...]
[(cons? g)
(... (first (first g)) ; first node in graph list

(listof-node-template
(second (first g))) ; list of adjacent nodes

(graph-template (rest g)))]))

> neighbours M18 9/45

We can use the graph template to write a function that produces the out-neighbours of a
node. We’ll need this function in just a moment.

;; (neighbours v g) produces list of neighbours of v in g
;; Examples:
(check-expect (neighbours 'D g) (list 'F 'J))
(check-expect (neighbours 'Z g) false)

;; neighbours: Node Graph → (anyof (listof Node) false)
;; Requires: v is a node in g
(define (neighbours v g)
(cond
[(empty? g) false]
[(symbol=? v (first (first g))) (second (first g))]
[else (neighbours v (rest g))]))

A

B

C

D

E

F

K H

J

E
x.

1
Write (count-out-neighbours g) which consumes a Graph and produces a
(listof Nat) indicating how many out-neighbours each Node in g has.
For example, with the sample graph

(check-expect (count-out-neighbours g)
(list 3 2 0 2 1 2 0 1 0))

Hint: map and length will be useful.

E
x.

2
Write a function (count-in-neighbours g) which consumes a Graph and produces a
(listof Nat) indicating how many in-neighbours each node has.
For example, with the sample graph

(check-expect (count-in-neighbours g)
(list 0 0 1 1 2 1 2 2 2))

Hint: filter, map, length and member? will be useful.
Hint: for each Node, we need to count how many nodes in g have that node as an
out-neighbour.

Finding paths M18 10/45

A path in a graph can be represented by an ordered list
of the nodes on the path.

We wish to design a function find-path that consumes
a graph plus origin and destination nodes, and
produces a path from the origin to the destination, or
false if no such path exists.

A

B

C

D

E

F

K H

J

(find-path 'A 'H g) ⇒ (list 'A 'D 'F 'H) or (list 'A 'D 'J 'H)

(find-path 'D 'H g) ⇒ (list 'D 'F 'H) or (list 'D 'J 'H)

(find-path 'C 'H g) ⇒ false

(find-path 'A 'A g) ⇒ (list 'A)

> Cases for find-path M18 11/45

Simple recursion does not work for find-path; we must use generative recursion.

If the origin equals the destination, the path consists of just this node.

Otherwise, if there is a path, the second node on that path must be an out-neighbour of the
origin node.

Each out-neighbour defines a subproblem (finding a path from it to the destination).

> Building a path from a solved sub-problem M18 12/45

In our example, any path from A to H must pass through C, D, or E.

If we knew a path from C to H, or from D to H, or from E to H, we could create one from A to
H.

A

B

C

D

E

F

K H

J

> Backtracking algorithms M18 13/45

Backtracking algorithms try to find a path from an origin to a destination.

If the initial attempt does not work, such an algorithm “backtracks” and tries another choice.

Eventually, either a path is found, or all possibilities are exhausted, meaning there is no
path.

» Backtracking in our example M18 14/45

In our example, we can see the
“backtracking” since the search for a path
from A to H can be seen as moving forward
in the graph looking for H.

If this search fails (for example, at C), then
the algorithm “backs up” to the previous
node (A) and tries the next neighbour (D).

If we find a path from D to H, we can just
add A to the beginning of this path.

A

B

C

D

E

F

K H

J

> Exploring the list of out-neighbours M18 15/45

We need to apply find-path on each of the out-neighbours of a given node.

The neighbours function gives us a list of all the out-neighbours associated with that node.

This suggests writing find-path/list which consumes a list of nodes and will apply
find-path to each one until it either finds a path to the destination or exhausts the list.

» Mutual recursion M18 16/45

This is the same recursive pattern that we saw in the processing of expression trees and
evolutionary trees.

For expression trees, we had two mutually recursive functions, eval and apply.

Here, we have two mutually recursive functions, find-path and find-path/list.

> find-path M18 17/45

;; (find-path orig dest g) finds path from orig to dest in g if it exists
;; find-path: Node Node Graph → (anyof (ne-listof Node) false)
(define (find-path orig dest g)
(cond [(symbol=? orig dest) (list dest)]

[else (local [(define nbrs (neighbours orig g))
(define ?path (find-path/list nbrs dest g))]

(cond [(false? ?path) false]
[else (cons orig ?path)]))]))

We’re using ?path to mean it might hold a path or it might not.

false? produces true if its argument is the value false.

> find-path/list M18 18/45

;; (find-path/list nbrs dest g) produces path from
;; an element of nbrs to dest in g, if one exists
;; find-path/list: (listof Node) Node Graph → (anyof (ne-listof Node) false)
(define (find-path/list nbrs dest g)
(cond [(empty? nbrs) false]

[else (local [(define ?path (find-path (first nbrs) dest g))]
(cond [(false? ?path)

(find-path/list (rest nbrs) dest g)]
[else ?path]))]))

> Tracing (find-path 'A 'B g) (1/2) M18 19/45

If we wish to trace find-path, trying to do a linear trace would be very long, both in terms of
steps and the size of each step. Our traces also are listed as a linear sequence of steps, but
the computation in find-path is better visualized as a tree.

We will use an alternate visualization of the potential computation (which could be
shortened if a path is found).

The next slide contains the trace tree. We have omitted the arguments dest and g which
never change.

» Tracing (find-path 'A 'B g) (2/2) M18 20/45

(find-path 'A)
(find-path/list '(C D E))

(find-path 'C)
(find-path/list empty)

(find-path 'D)
(find-path/list '(F J))

(find-path 'E)
(find-path/list '(K))

(find-path 'F)
(find-path/list '(K H))

(find-path 'J)
(find-path/list '(H))

(find-path 'K)
(find-path/list empty)

(find-path 'H)
(find-path/list empty)

(find-path 'H)
(find-path/list empty)

(find-path 'K)
(find-path/list empty)

> Backtracking in implicit graphs (1/3) M18 21/45

The only places where real computation is done on the graph is in comparing the origin to
the destination and in the neighbours function.

Backtracking can be used without having the entire graph available if the neighbours can be
derived from a “configuration”.

Board games: Puzzles:

https://www.puzzleprime.com/brain-teasers/deduction/eight-queens-puzzle/

» Backtracking in implicit graphs (2/3) M18 22/45

Nodes typically represent configurations:
(e.g. X’s and O’s played so far)

Edges represent ways in which one
configuration becomes another: (e.g. the
next player places an X or O)

The graph is acyclic if no configuration can
occur twice in a game. This happens
naturally when edges represent additions
(tic-tac-toe, 8-queens, Sudoku).

https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-3-tic-tac-
toe-ai-finding-optimal-move/

» Backtracking in implicit graphs (3/3) M18 23/45

The find-path functions for implicit backtracking look very similar to those we have
developed.

The neighbours function must now generate the set of neighbours of a node based on some
description of that node (e.g. the placement of pieces in a game).

This allows backtracking in situations where it would be inefficient to generate and store the
entire graph as data.

Backtracking in implicit graphs forms the basis of many artificial intelligence programs,
though they generally add heuristics to determine which neighbour to explore first, or which
ones to skip because they appear unpromising.

Termination of find-path (no cycles) M18 24/45

In a directed acyclic graph, any path with a given origin will recurse on its (finite number) of
neighbours by way of find-path/list. The origin will never appear in this call or any
subsequent calls to find-path: if it did, we would have a cycle in our DAG.

Thus, the origin will never be explored in any later call, and thus the subproblem is smaller.
Eventually, we will reach a subproblem of size 0 (when all reachable nodes are treated as
the origin).

Thus find-path always terminates for directed acyclic graphs.

> Non-termination of find-path (cycles) M18 25/45

It is possible that find-path may not terminate if there is a cycle in the graph.

Consider the graph . What if we try to find a path from A to D in this graph?

A
B

C

D
'((A (B))
(B (C))
(C (A))
(D ()))

> Non-termination of find-path (cycles) M18 26/45

A
B

C

D

(find-path 'A)
(find-path/list (list ‘B))

(find-path 'B)
(find-path/list (list 'C))

(find-path 'C)
(find-path/list (list 'A))

(find-path 'A)
(find-path/list (list 'B))

...

Paths v2: Handling cycles M18 27/45

We can use accumulative recursion to solve the problem of find-path possibly not
terminating if there are cycles in the graph.

To make backtracking work in the presence of cycles, we need a way of remembering what
nodes have been visited (along a given path).

Our accumulator will be a list of visited nodes.

We must avoid visiting a node twice.

The simplest way to do this is to add a check in find-path/list.

> find-path/list M18 28/45

;; find-path/list: (listof Node) Node Graph (listof Node) →
;; (anyof (listof Node) false)
(define (find-path/list nbrs dest g visited)
(cond [(empty? nbrs) false]

[(member? (first nbrs) visited)
(find-path/list (rest nbrs) dest g visited)]

[else (local [(define ?path (find-path/acc (first nbrs)
dest g visited))]

(cond [(false? ?path)
(find-path/list (rest nbrs) dest g visited)]
[else ?path]))]))

> find-path/list’s accumulator M18 29/45

The code for find-path/list does not add anything to the accumulator (though it uses the
accumulator).

Adding to the accumulator is done in find-path/acc which applies find-path/list to the list
of neighbours of some origin node.

That origin node must be added to the accumulator passed as an argument to
find-path/list.

> find-path/acc M18 30/45

;; find-path/acc: Node Node Graph (listof Node) →
;; (anyof (listof Node) false)
(define (find-path/acc orig dest g visited)
(cond [(symbol=? orig dest) (list dest)]

[else (local [(define nbrs (neighbours orig g))
(define ?path (find-path/list nbrs dest g

(cons orig visited)))]

(cond [(false? ?path) false]
[else (cons orig ?path)]))]))

(define (find-path orig dest g) ;; new wrapper function
(find-path/acc orig dest g empty))

> Tracing our examples (1/4) M18 31/45

A

B

C

D

E

F

K H

J

> Tracing our examples (2/4) M18 32/45

(find-path/acc 'A empty)
(find-path/list '(C D E) '(A))

(find-path/acc 'C '(A))
(find-path/list empty '(C A)) (find-path/acc 'D '(A))

(find-path/list '(F J) '(D A))

(find-path/acc 'E '(A))
(find-path/list '(K) '(E A))

(find-path/acc 'F '(D A))
(find-path/list '(K H) '(F D A))

(find-path/acc 'J '(D A))
(find-path/list '(H) '(J D A))

(find-path/acc 'K '(F D A))
(find-path/list empty '(K F D A))

(find-path/acc 'H '(F D A))
(find-path/list empty '(H F D A))

(find-path/acc 'H '(J D A))
(find-path/list empty '(H J D A))

(find-path/acc 'K '(E A))
(find-path/list empty '(K E A))

Note that the value of the accumulator in find-path/list is always the reverse of the path
from A to the current origin (first argument).

> Tracing our examples (3/4) M18 33/45

This example has no cycles, so the trace only convinces us that we haven’t broken the
function on acyclic graphs, and shows us how the accumulator is working.

But it also works on graphs with cycles.

The accumulator ensures that the depth of recursion is no greater than the number of nodes
in the graph, so find-path terminates.

> Tracing our examples (4/4) M18 34/45

A
B

C

D

(find-path/acc 'A empty)
(find-path/list '(B) (list 'A))

(find-path/acc 'B (list 'A))
(find-path/list '(C) (list 'B 'A))

(find-path/acc 'C (list 'B 'A))
(find-path/list '(A) (list 'C 'B 'A))

no further calls to find-path/acc

> Cycles is solved, but... M18 35/45

Backtracking now works on graphs with cycles, but it can be inefficient, even if the graph
has no cycles.

If there is no path from the origin to the destination, then find-path will explore every path
from the origin, and there could be an exponential number of them.

Paths v3: Efficiency M18 36/45

If there is no path from the origin to the destination, then find-path will explore every path
from the origin, and there could be an exponential number of them.

D1

D1a

D2 Y

D1b

ZD2a

D3

D2b

...

If there are d diamonds, then there are 3d + 2 nodes in the graph, but 2d paths from D1 to Y,
all of which will be explored.

> Understanding the problem (1/2) M18 37/45

Applying find-path/acc to origin D1 results in find-path/list being applied to
(list 'D1a 'D1b), and then find-path/acc being applied to origin D1a.

There is no path from D1a to Z, so this will produce false, but in the process, it will visit all
the other nodes of the graph except D1b and Z.

find-path/list will then apply find-path/acc to D1b, which will visit all the same nodes
again.

D1

D1a

D2 Y

D1b

ZD2a

D3

D2b

...

> Understanding the problem (2/2) M18 38/45

When find-path/list is applied to the list of nodes nbrs, it first applies find-path/acc to
(first nbrs) and then, if that fails, it applies itself to (rest nbrs).

To avoid revisiting nodes, the failed computation should pass the list of nodes it has seen on
to the next computation.

It will do this by returning the list of visited nodes instead of false when it fails to find a path.
However, we must be able to distinguish this list from a successfully found path (also a list of
nodes).

D1

D1a

D2 Y

D1b

ZD2a

D3

D2b

...

> Remembering what the list of nodes represents M18 39/45

We will encapsulate each kind of list in its own structure. We can then easily use the
structure predicates (success? and failure?) to check whether the list of nodes represents
a path (success) or visited nodes (failure).

(define-struct success (path))
;; A Success is a (make-success (listof Node))

(define-struct failure (visited))
;; A Failure is a (make-failure (listof Node))

;; A Result is (anyof Success Failure)

> find-path/list M18 40/45

;; find-path/list: (listof Node) Node Graph (listof Node) → Result
(define (find-path/list nbrs dest g visited)
(cond [(empty? nbrs) (make-failure visited)]

[(member? (first nbrs) visited)
(find-path/list (rest nbrs) dest g visited)]
[else (local [(define result (find-path/acc (first nbrs)

dest g visited))]
(cond [(failure? result)

(find-path/list (rest nbrs) dest g
(failure-visited result))]

[(success? result) result]))]))

?path is renamed result for clarity.

> find-path/acc M18 41/45

;; find-path/acc: Node Node Graph (listof Node) → Result
(define (find-path/acc orig dest g visited)
(cond [(symbol=? orig dest) (make-success (list dest))]

[else (local [(define nbrs (neighbours orig g))
(define result (find-path/list nbrs dest g

(cons orig visited)))]
(cond [(failure? result) result]

[(success? result)
(make-success (cons orig

(success-path result)))]))]))

?path is renamed result for clarity.

> find-path M18 42/45

;; find-path: Node Node Graph → (anyof (listof Node) false)
(define (find-path orig dest g)
(local [(define result (find-path/acc orig dest g empty))]
(cond [(success? result) (success-path result)]

[(failure? result) false])))

> find-path v3 summary M18 43/45

With these changes, find-path runs much faster on the diamond graph.

In future courses we will see how to make find-path even more efficient and how to
formalize our analyses.

Knowledge of efficient algorithms, and the data structures that they utilize, is an essential
part of being able to deal with large amounts of real-world data.

These topics are studied in CS 240 and CS 341 (for majors) and CS 234 (for non-majors).

E
x.

3
Write a function k-path-length which consumes a symbol start corresponding to a
node, a number k, and a graph. If there is a path with k or more edges originating from
start that does not repeat any nodes, the function produces one such path. Otherwise
the function produces false.

E
x.

4

Write a function, make-diamond-graph, which consumes n and produces a Graph with n
diamonds. You can make a symbol to identify a node with

;; mk-node: Nat Str -> Sym
(define (mk-node n suffix)
(string->symbol (string-append "D" (number->string n) suffix)))

Note the use of string->symbol which we are not including as one of the “permitted
functions” on the last slide!

E
x.

5
Write a function, graph-complement, that consumes a graph and produces its
complement. The complement of a graph g is a graph g′ such that for each pair of
nodes u and v , (u, v) is an edge in g′ if and only if it is not an edge in g. Assume that
neither graph has edges from a node to itself. For example, the complement of
simple-graph is complement-graph:

(define simple-graph
'((a (i j k))
(j ())
(k (a j))
(i (j)))

(define complement-graph
'((a ())
(j (i a k))
(k (i))
(i (a k))))

Use explicit recursion. Encapsulate helper functions using local.

E
x.

6 Write a function, graph-complement/alf, which is the same as graph-complement

except that it is implemented using higher order functions, not explicit recursion.

Goals of this module M18 44/45

You should understand directed graphs and their representation in Racket.

You should be able to write functions which consume graphs and compute desired
values.

You should understand and be able to implement backtracking on explicit and implicit
graphs.

You should understand the problems that the second and third versions of find-path
address and how they solve those problems.

Summary: built-in functions M18 45/45

The following functions and special forms have been introduced in this module:

false? member?

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - ... / < <= = > >= abs add1 and append boolean? build-list ceiling char-alphabetic?

char-downcase char-lower-case? char-numeric? char-upcase char-upper-case?
char-whitespace? char<=? char<? char=? char>=? char>? char? check-error check-expect
check-within cond cons cons? cos define define-struct define/trace e eighth else
empty? equal? error even? exp expt false? fifth filter first floor foldl foldr fourth
integer? lambda length list list->string list? local log map max member? min modulo
negative? not number->string number? odd? or pi positive? quicksort quotient remainder
rest reverse round second seventh sgn sin sixth sqr sqrt string->list string-append
string-downcase string-length string-lower-case? string-numeric? string-upcase
string-upper-case? string<=? string<? string=? string>=? string>? string? sub1
substring symbol=? symbol? tan third zero?

	Intro
	Representation
	Paths v1
	Termination
	Paths v2
	Paths v3

