
15: Lambda



Anonymous Functions M15 2/22

Functions as first-class values (previous module) offer many new possibilities for writing
programs, including:

Functions that consume functions as arguments, modifying their behaviour.

Functions that produce new functions, customized by the first function’s parameters.

Functions bound to constants for later use.

Functions stored in data structures, also for later use.

Lambda provides a clean, lean way to produce a function that makes it easier to use
functions as first-class values (last module) and work exceptional well with higher-order
functions (next module).



Anonymous functions M15 3/22

(define (make-adder n)
(local [(define (f m) (+ n m))]
f))

(make-adder 3)

The result of evaluating this expression is a function.

What is its name? It is anonymous (has no name).

This is sufficiently valuable that there is a special mechanism for it.



> Producing anonymous functions M15 4/22

(define (not-symbol-apple? item) (not (symbol=? item 'apple)))
(define (eat-apples lst) (filter not-symbol-apple? lst))

This is a little unsatisfying, because not-symbol-apple? is such a small and relatively
useless function.

It is unlikely to be needed elsewhere.

We can avoid cluttering the top level with such definitions by putting them in local

expressions.



> Producing anonymous functions M15 5/22

(define (eat-apples lst)
(local [(define (not-symbol-apple? item)

(not (symbol=? item 'apple)))]
(filter not-symbol-apple? lst)))

This is as far as we would go based on our experience with local.

But now that we can use functions as values, the value produced by the local expression
can be the function not-symbol-apple?.

We can give that value as an argument to filter.



> Producing anonymous functions M15 6/22

(define (eat-apples lst)
(filter (local [(define (not-symbol-apple? item)

(not (symbol=? item 'apple)))]
not-symbol-apple?)

lst))

But this is still unsatisfying. Why should we have to name not-symbol-apple? at all? In the
expression (* (+ 2 3) 4), we didn’t have to name the intermediate value 5.

Racket provides a mechanism for constructing a nameless function which can then be used
as an argument.



> Introducing lambda M15 7/22

(local [(define (name-used-once x_1 ... x_n) exp)]
name-used-once)

can also be written

(lambda (x_1 ... x_n) exp)

lambda can be thought of as “make-function”.

It can be used to create a function which we can then use as a value – for example, as the
value of the first argument of filter.



> Example: define eat-apples with lambda M15 8/22

We can use lambda to replace

(define (eat-apples lst)
(filter (local [(define (not-symbol-apple? item)

(not (symbol=? item 'apple)))]
not-symbol-apple?)

lst))

with the following:

(define (eat-apples lst)
(filter (lambda (item) (not (symbol=? item 'apple))) lst))

But how does this work? As usual, we’ll approach it with a trace.



» Tracing eat-apples M15 9/22

(define (eat-apples lst)
(my-filter (lambda (item) (not (symbol=? item 'apple))) lst))

(eat-apples (list 'pear 'apple))
⇒ (my-filter (lambda (item) (not (symbol=? item 'apple)))) (list 'pear 'apple))
⇒ (cond [(empty? (list 'pear 'apple)) empty]

[((lambda (item) (not (symbol=? item ’apple)))

(first (list ’pear ’apple)))

(cons (first (list 'pear 'apple))
(my-filter (lambda (item) (not (symbol=? item 'apple))) (rest

(list 'pear 'apple))))]
[else (my-filter (lambda (item) (not (symbol=? item 'apple)))

(rest (list 'pear 'apple)))])

What does the underlined expression mean?



» Tracing eat-apples cont. M15 10/22

((lambda (item) (not (symbol=? item 'apple)))) (first (list 'pear 'apple)))

The double parentheses indicates that we need to compute the function (the inner
expression) to apply to the arguments (the outer expression). In this case, “compute”
means create the function using lambda.

Lambda expressions are already in the simplest form, so the next step in the trace is to
reduce the arguments to values:

⇒ ((lambda (item) (not (symbol=? item 'apple)))) 'pear)

Finally, each argument is matched with the corresponding parameter and then substituted
into the function’s body expression each place that parameter appears. The entire
expression is replaced with the rewritten body expression.

⇒ (not (symbol=? 'pear 'apple))



> Using lambda M15 11/22

We can use lambda to simplify make-adder. Instead of

(define (make-adder n)
(local [(define (f m) (+ n m))]
f))

we can write:

(define (make-adder n)
(lambda (m) (+ n m)))



> Introducing lambda M15 12/22

lambda is available in Intermediate Student with Lambda.

Lambda is the name of the Greek letter λ, which was used as
notation in the first formal model of computation.

We’ll learn more about its central importance in the history of computation in the last lecture
module.



Syntax and semantics of Intermed. Student w/ lambda M15 13/22

When we first encountered ((make-adder 3) 4), we noted the differences in function
application:

Before Module 15
First position in an application
must be a built-in or user-defined
function.

A function name had to follow an
open parenthesis.

Module 15 and later
First position can be an expression (computing the
function to be applied). Evaluate it along with the
other arguments.

A function application can have two or more open
parentheses in a row: ((make-adder 3) 4) or
((lambda (x y) (+ x y x)) 1 2).

These observations are also true of using lambda.



> Substitution rule M15 14/22

We need a rule for evaluating applications where the function being applied is anonymous
(a lambda expression).

((lambda (x_1 ... x_n) exp) v_1 ... v_n) ⇒ exp'

where exp' is exp with all occurrences of x_1 replaced by v_1, all occurrences of x_2
replaced by v_2, and so on.

As an example:

((lambda (x y) (* (+ y 4) x)) 5 6)
⇒ (* (+ 6 4) 5)
⇒ ... ⇒ 50



> Example: Tracing with lambda (1) M15 15/22

(define foo (lambda (x) (+ 10 x)))

(foo 5) ⇒
((lambda (x) (+ 10 x)) 5) ⇒
(+ 10 5) ⇒
15



> lambda and function definitions M15 16/22

lambda underlies the definition of functions.

Until now, we have had two different types of definitions.

;; a definition of a numerical constant
(define interest-rate 3/100)
;; a definition of a function to compute interest
(define (interest-earned amount) (* interest-rate amount))

But there is really only one kind of define, which binds a name to a value.



> lambda and function definitions M15 17/22

Internally,

(define interest-rate 0.03)
(define (interest-earned amount) (* interest-rate amount))

is translated to

(define interest-earned (lambda (amount) (* interest-rate amount)))

which binds the name interest-earned to the function value
(lambda (amount) (* interest-rate amount)).



> Example: Tracing with lambda (2) M15 18/22

Here’s make-adder rewritten using lambda.

(define make-adder
(lambda (x)
(lambda (y)
(+ x y))))

What is ((make-adder 3) 4)?



> Example: Tracing with lambda (2) M15 19/22

(define make-adder
(lambda (x)
(lambda (y)
(+ x y))))

(define make-adder (lambda (x) (lambda (y) (+ x y))))
((make-adder 3) 4) ⇒ ;; substitute the lambda expression
(((lambda (x) (lambda (y) (+ x y))) 3) 4) ⇒
((lambda (y) (+ 3 y)) 4) ⇒
(+ 3 4) ⇒ 7

make-adder is defined as a constant using lambda. Like any other constant, make-adder is
replaced by its value (the lambda expression).



E
x.

1
Using lambda and filter but no named helper functions, write a function that consumes
a (listof Str) and produces a list containing all the strings that have a length of 4.

(keep4 (list "There's"
"no"
"fate"
"but"
"what"
"we"
"make"
"for"
"ourselves"))

=> (list "fate" "what" "make")



> lambda and function definitions M15 20/22

We should change our semantics for function definition to represent this rewriting.

But doing so would make traces much harder to understand.

As long as the value of defined constants (now including functions) cannot be changed, we
can leave their names unsubstituted in our traces for clarity.

In stepper questions, if a function is defined using function syntax, you can skip the lambda
substitution step. If a function is defined as a constant using lambda, you must include the
lambda substitution step.



Goals of this module M15 21/22

You should be able to write functions using lambda (both consuming and producing).

You should understand how lambda underlies our usual definition of functions.

You should be able to trace function applications involving lambda.



Summary: built-in functions M15 22/22

The following functions and special forms have been introduced in this module:

lambda

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - ... / < <= = > >= abs add1 and append boolean? ceiling char-alphabetic?

char-downcase char-lower-case? char-numeric? char-upcase char-upper-case?
char-whitespace? char<=? char<? char=? char>=? char>? char? check-error check-expect
check-within cond cons cons? cos define define-struct define/trace e eighth else
empty? equal? error even? exp expt fifth filter first floor fourth integer? lambda
length list list->string list? local log max min modulo negative? not number->string
number? odd? or pi positive? quotient remainder rest reverse round second seventh sgn
sin sixth sqr sqrt string->list string-append string-downcase string-length
string-lower-case? string-numeric? string-upcase string-upper-case? string<=? string<?
string=? string>=? string>? string? sub1 substring symbol=? symbol? tan third zero?


	Anonymous functions
	Syntax

