
14: Functions as Values

First class values M14 2/41

Racket is a functional programming language, primarily because Racket’s functions are first
class values.

Functions have the same status as the other values we’ve seen. They can be:

1 consumed as function arguments

2 produced as function results

3 bound to identifiers

4 stored in lists and structures

Functions are first class values in the Intermediate Student (and above) versions of Racket.

Change your language level to Intermediate Student with Lambda.

First class values in other languages M14 3/41

Functions as first-class values have historically been missing from languages that are not
primarily functional.

The utility of functions-as-values is now widely recognized, and they are at least partially
supported in many languages that are not primarily functional, including C++, C#, Java, Go,
and Python.



Consuming functions M14 4/41

In Intermediate Student a function can consume another function as an argument:

(define (foo f x y) (f x y))

(foo + 2 3) ⇒ (+ 2 3) ⇒ 5

(foo * 2 3) ⇒ (* 2 3) ⇒ 6

(foo append (list 'a 'b 'c) (list 1 2 3))
⇒ (append (list 'a 'b 'c) (list 1 2 3))
⇒ (list 'a 'b 'c 1 2 3)

Is this useful?

Consider two similar functions, eat-apples and keep-odds.

> Example: Eating apples M14 5/41

Consider two similar functions, eat-apples and keep-odds.

(define (eat-apples lst)
(cond [(empty? lst) empty]

[(not (symbol=? (first lst) 'apple))
(cons (first lst) (eat-apples (rest lst)))]
[else (eat-apples (rest lst))]))

> Example: Keeping odd numbers M14 6/41

Consider two similar functions, eat-apples and keep-odds.

(define (keep-odds lst)
(cond [(empty? lst) empty]

[(odd? (first lst))
(cons (first lst) (keep-odds (rest lst)))]
[else (keep-odds (rest lst))]))



> Example: Abstracting out differences M14 7/41

What these two functions have in common is their general structure.

Where they differ is in the specific predicate used to decide whether an item is removed
from the answer or not.

Because functions are first class values, we can write one function to do both these tasks
because we can supply the predicate to be used as an argument to that function.

> Abstracting keep-odds to my-filter M14 8/41

(define (keep-odds lst)
(cond [(empty? lst) empty]

[(odd? (first lst))
(cons (first lst) (keep-odds (rest lst)))]
[else (keep-odds (rest lst))]))

(define (eat-apples lst)
(cond [(empty? lst) empty]

[(not (symbol=? (first lst) 'apple))
(cons (first lst) (eat-apples (rest lst)))]
[else (eat-apples (rest lst))]))

(define (my-filter pred? lst)

(cond [(empty? lst) empty]
[(pred? (first lst))

(cons (first lst) (my-filter pred? (rest lst)))]

[else (my-filter pred? (rest lst))]))

» Tracing my-filter M14 9/41

(define (my-filter pred? lst)
(cond [(empty? lst) empty]

[(pred? (first lst))
(cons (first lst) (my-filter pred? (rest lst)))]
[else (my-filter pred? (rest lst))]))

(my-filter even? (list 0 1 2 3 4))
⇒ (cond [(empty? (list 0 1 2 3 4)) empty]

[(even? (first (list 0 1 2 3 4)))
(cons (first (list 0 1 2 3 4))

(my-filter even? (rest (list 0 1 2 3 4))))]
[else (my-filter even? (rest (list 0 1 2 3 4)))]))

⇒ (cons 0 (my-filter even? (list 1 2 3 4)))
⇒ (cons 0 (my-filter even? (list 2 3 4)))
⇒∗(cons 0 (cons 2 (cons 4 empty)))



» filter M14 10/41

my-filter performs the same actions as
the built-in function filter.

filter is available beginning with
Intermediate Student.

filter handles the general operation of
selectively keeping items on a list.
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filter is an example of a higher order function. Higher order functions either consume a
function or produce a function (or both).

We’ll see more higher order functions in the next lecture module.

> Using filter M14 11/41

(define (keep-odds lst) (filter odd? lst))

(define (not-symbol-apple? item) (not (symbol=? item 'apple)))
(define (eat-apples lst) (filter not-symbol-apple? lst))

filter and other higher order functions provided in Racket are used to apply common
patterns of simple recursion.

We’ll discuss how to write contracts for them shortly.

E
x.

1 Use filter to write a function that keeps all multiples of 3.
(keep-multiples3 (list 1 2 3 4 5 6 7 8 9 10)) ⇒ (list 3 6 9)

E
x.

2 Use filter to write a function that keeps all multiples of 2 or 3.
(keep-multiples23 (list 1 2 3 4 5 6 7 8 9 10)) ⇒ (list 2 3 4 6 8 9 10)

E
x.

3

Use filter to write a function that consumes a (listof Num) and keeps only values
between 10 and 30, inclusive.

(check-expect (keep-inrange (list -5 10.1 12 7 30 3 19 6.5 42))
(list 10.1 12 30 19))



E
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4
Use filter to write a function that consumes a (listof Str) and removes all strings of
length greater than 6.

;; (keep-short lst) Keep all the values in lst of length at most 6.
;; Example:
(check-expect (keep-short (list "Strive" "not" "to" "be" "a" "success"

"but" "rather" "to" "be" "of" "value"))
(list "Strive" "not" "to" "be" "a"

"but" "rather" "to" "be" "of" "value"))

;; keep-short: (listof Str) → (listof Str)

E
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5

Write a function (sum-odds-or-evens lst) that consumes a (listof Int). If there are
more evens than odds, the function returns the sum of the evens. Otherwise, it returns
the sum of the odds.
Use local.

> Advantages of functional abstraction M14 12/41

Functional abstraction is the process of creating abstract functions such as filter.
Advantages include:

1 Reducing code size.

2 Avoiding cut-and-paste.

3 Fixing bugs in one place instead of many.

4 Improving one functional abstraction improves many applications.

We will do more of this in the next lecture module.

Producing functions M14 13/41

We saw in lecture module 14 how local could be used to create functions during a
computation, to be used in evaluating the body of the local.

But now, because functions are values, the body of the local can produce such a function
as a value.

Though it is not apparent at first, this is enormously useful.

We illustrate with a very small example.



> Example: make-adder M14 14/41

(define (make-adder n)
(local
[(define (f m) (+ n m))]
f))

What is (make-adder 3)?
We can answer this question with a trace.

(make-adder 3)
⇒ (local [(define (f m) (+ 3 m))] f)
⇒ (define (f_1 m) (+ 3 m)) f_1

(make-adder 3) is the renamed
function f_1, which is a function
that adds 3 to its argument.

We can apply this function
immediately, or we can use it in
another expression, or we can put
it in a data structure.

> Example: make-adder applied immediately M14 15/41

((make-adder 3) 4)
⇒ ((local [(define (f m) (+ 3 m))] f) 4)
⇒ (define (f_1 m) (+ 3 m)) (f_1 4)
⇒ (+ 3 4) ⇒ 7

Before
First position in an application
must be a built-in or user-defined
function.

A function name had to follow an
open parenthesis.

Now
First position can be an expression (computing the
function to be applied). Evaluate it along with the
other arguments.

A function application can have two or more open
parentheses in a row: ((make-adder 3) 4).

» A note on scope M14 16/41

(define (add3 m)
(+ 3 m))

(define (make-adder n)
(local [(define (f m) (+ n m))]
f))

In add3 the parameter m is of no consequence after add3 is applied. Once add3 produces its
value, m can be safely forgotten.

However, our earlier trace of make-adder shows that after it is applied the parameter n does
have a consequence. It is embedded into the result, f, where it is “remembered” and used
again, potentially many times.



> Producing and consuming functions M14 17/41

Using local to produce a function gives us a way to create semi-custom functions “on the
spot” to use in expressions. This is particularly useful with higher order functions such as
filter.

In the next lecture module we’ll see an easier way to produce functions that are only used
once – like eat-apples.

E
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6

Write a function (make-divisible? n) that produces a predicate function. The
predicate function consumes a Int, returns true if its argument is divisible by n, and
false otherwise.

You may test your function by having it produce a function for filter:

(check-expect (filter (make-divisible? 2) (list 0 1 2 3 4 5 6 7 8 9))
(list 0 2 4 6 8))

(check-expect (filter (make-divisible? 3) (list 0 1 2 3 4 5 6 7 8 9))
(list 0 3 6 9))

(check-expect (filter (make-divisible? 4) (list 0 1 2 3 4 5 6 7 8 9))
(list 0 4 8))

Binding functions to identifiers M14 18/41

The result of make-adder can be bound to an identifier and then used repeatedly.

(define add2 (make-adder 2))
(define add3 (make-adder 3))

(add2 3) ⇒ 5
(add3 10) ⇒ 13
(add3 13) ⇒ 16



» Tracing a bound identifier M14 19/41

How does this work?

(define add2 (make-adder 2))
⇒ (define add2 (local [(define (f m) (+ 2 m))] f))
⇒ (define (f_1 m) (+ 2 m)) ; rename and lift out f

(define add2 f_1)

(add2 3)
⇒ (f_1 3)
⇒ (+ 2 3)
⇒ 5

Storing functions in lists & structures M14 20/41

Recall our code in lecture module 11 for evaluating arithmetic expressions (just + and * for
simplicity):

(define-struct opnode (op args))
;; An OpNode is a (make-opnode (anyof '* '+) (listof AExp)).
;; An AExp is (anyof Num OpNode)

;; (eval exp) evaluates the arithmetic expression exp.
;; Examples:
(check-expect (eval 5) 5)
(check-expect (eval (make-opnode '+ (list 1 2 3 4))) 10)
(check-expect (eval (make-opnode '* (list ))) 1)

;; eval: AExp → Num

> Example: eval and apply from M11 M14 21/41

;; eval: AExp → Num
(define (eval exp)
(cond [(number? exp) exp]

[(opnode? exp) (my-apply (opnode-op exp) (opnode-args exp))]))

;; (my-apply op args) applies the arithmetic operator op to args.
;; my-apply: (anyof '+ '*) (listof AExp) → Num
(define (my-apply op args)
(cond [(empty? args) (cond [(symbol=? op '+) 0]

[(symbol=? op '*) 1])]

[(symbol=? op '+) (+ (eval (first args))

(my-apply op (rest args)))]

[(symbol=? op '*) (* (eval (first args))

(my-apply op (rest args)))]))



> Example: Evaluating expressions with functions M14 22/41

In opnode we can replace the symbol representing a function with the function itself:

(define-struct opnode (op args))
;; An opnode is a (make-opnode ??? (listof AExp))
;; An AExp is (anyof Num opnode)

(check-expect (eval 3) 3)
(check-expect (eval (make-opnode + (list 2 3 4))) 9)
(check-expect (eval (make-opnode + empty)) 0)

Some observations about Intermediate Student that will be handy:

(+ 1 2) ⇒ 3
(+ 1) ⇒ 1
(+ ) ⇒ 0

(* 2 3) ⇒ 6
(* 2) ⇒ 2
(* ) ⇒ 1

> Example: Evaluating expressions with functions M14 23/41

eval does not change. Here are the changes to my-apply:

Old:

(define (my-apply op args)
(cond [(empty? args) (cond [(symbol=? op '+) 0]

[(symbol=? op '*) 1])]
[(symbol=? op '+) (+ (eval (first args))

(my-apply op (rest args)))]
[(symbol=? op '*) (* (eval (first args))

(my-apply op (rest args)))]))

New:

(define (my-apply op args)
(cond [(empty? args) (op )]

[else (op (eval (first args))
(my-apply op (rest args)))]))

> Example: Observations M14 24/41

This works for any binary function that is also defined for zero arguments.

Next steps:
We know that a structure with n fields can be replaced with an n-element list.

For example:
(eval (list + 1 (list * 3 3 3)))

vs.
(eval (make-opnode + (list 1 (make-opnode * (list 3 3 3)))))

Quoting is still another way to represent a list. Using that technique,
(eval (list + 1 (list * 3 3 3))) becomes (eval '(+ 1 (* 3 3 3))) – a very natural
representation.

This seems like a ‘win’, but...



Aside: Quoting M14 25/41

Quote notation or quoting gives a super-compact notation for lists.

cons notation emphasizes a fundamental characteristic of a list – it has a first element and
the rest of the elements. Elements of the list can be computed as the list is constructed. But
writing out a list with cons notation is unwieldy.

list notation makes our lists more compact but loses the reminder about the first element
and the rest. Like cons, elements of the list can be computed as the list is constructed.

Quote notation is even more compact but loses the ability to compute elements during
construction. This implies that every quoted list is a literal value. A quoted list cannot
(easily) contain a function.

Aside: Quoting (cont.) M14 26/41

Examples:

1 '1 ⇒ 1, '"ABC" ⇒ "ABC", 'earth ⇒ 'earth

2 '(1 2 3) ⇒ (list 1 2 3)

3 '(a b c) ⇒ (list 'a 'b 'c)

4 '(1 ("abc" earth) 2) ⇒ (list 1 (list "abc" 'earth) 2)

5 '(1 (+ 2 3)) ⇒ (list 1 (list '+ 2 3))

6 '() ⇒ empty

7 '(1 2 (make-posn 3 4) 5) ⇒ (list 1 2 (list 'make-posn 3 4) 5)

'X is an abbreviation for (quote X). quote is a special form; it does not evaluate its
arguments in the normal fashion.

CS135 will use quoting to represent lists more compactly for this version of eval and
apply and to represent graphs in M18. We will not use it elsewhere and it will not be
tested.

E
x.

7

Convert each value into quote notation, and enter the quoted version into DrRacket.
(Your solution should contain the quote symbol, ', but should not contain cons or list.)
If your quoted code is correct, DrRacket will convert it back to the same code in list
notation.

1 (cons 4 (cons "Donkey" (cons 'ice-cream empty)))

2 (list 'paper 'pen "eraser" (list 32 'pencil (list "calculator")))



Recap M14 27/41

We’d like to use quoted lists to make the input to eval more natural:

(eval '(+ 2 (* 3 4) (+ 5 6)))

However, quoting turns the + and * functions into symbols: '+ and '*.

Can we implement eval and apply without resorting to another cond and lots of boilerplate
code?

Yes: create a dictionary (association list) that maps each symbol to a function.

> Example: Functions in a table (1/2) M14 28/41

(define trans-table (list (list '+ +)
(list '* *)))

;; (lookup-al key al) finds the value in al corresponding to key
;; lookup-al: Sym AL → ???
(define (lookup-al key al)
(cond [(empty? al) false]

[(symbol=? key (first (first al))) (second (first al))]
[else (lookup-al key (rest al))]))

Now (lookup-al '+ trans-table) produces the function +.

((lookup-al '+ trans-table) 3 4 5) ⇒ 12

> Example: Functions in a table (2/2) M14 29/41

;; (eval ex) evaluates the arithmetic expression ex.
;; eval: AExp → Num
(define (eval ex)
(cond [(number? ex) ex]

[(cons? ex) (my-apply (lookup-al (first ex) trans-table)
(rest ex))]))

;; (my-apply op exlist) applies op to the list of arguments.
;; my-apply: ??? (listof AExp) → Num
(define (my-apply op args)
(cond [(empty? args) (op )]

[else (op (eval (first args))
(my-apply op (rest args)))]))



> Functions in lists and structures (summary) M14 30/41

We’ve stored functions in both a structure and a list.

Using a function instead of a symbol got rid of a lot of boiler-plate code in apply.

Using quote notation made our expressions much more succinct, but forced us to again
deal with symbols to represent functions.

Putting symbols and functions in an association list provided a clean solution.

Adding a new binary function (that is also defined for 0 arguments) only requires a one
line addition to trans-table.

Functions as first class values (summary) M14 31/41

As a first class value, we can do anything with a function that we can do with other values.
We saw them all in the last example:

Consume: my-apply consumes the operator

Produce: lookup-al looks up a symbol, producing the corresponding function

Bind: results of lookup-al to op

Store: stored in trans-table

Contracts and types M14 32/41

Contracts describe the type of data consumed by and produced by a function.

Until now, the type of data has been constructed from building blocks consisting of basic
(built-in) types, defined (struct) types, anyof types, and list types such as (listof Sym).

What is the type of a function consumed or produced by another function?



E
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8 Using the code in the commentary and without looking at the video again, reproduce
the logic to arrive at the contracts for make-between, in-discontinuous-range, and
make-in-discontinuous-range.

> Contracts as types M14 33/41

We can use the contract for a function as its type.

For example, the type of > is (Num Num → Bool), because that’s the contract of that function.

We can then use type descriptions like this in contracts for functions which consume or
produce other functions.

> Contracts as types: Examples M14 34/41

;; my-apply: (Num Num -> Num) (listof AExp) -> Num
(define (my-apply op args) ...)

(define trans-table (list (list '+ +)
(list '* *)))

;; (lookup-al key al) finds the value in al corresponding to key
;; lookup-al: Sym (listof (list Sym (Num Num → Num))) →
;; (anyof false (Num Num → Num))
(define (lookup-al key al)
(cond [(empty? al) false]

[(symbol=? key (first (first al))) (second (first al))]
[else (lookup-al key (rest al))]))



> Contracts for higher order functions M14 35/41

filter consumes a function and a list, and produces a list.

We might be tempted to conclude that its contract is
(Any → Bool) (listof Any) → (listof Any).

But this is not specific enough.

Consider the application (filter odd? (list 1 2 3)). This does not obey the contract (the
contract for odd? is Int → Bool) but still works as desired.

The problem: there is a relationship among the two arguments to filter and the result of
filter that we need to capture in the contract.

> Parametric types M14 36/41

An application of (filter pred? lst) can work on any type of list, but the predicate
provided should consume elements of that type of list.

In other words, we have a dependency between the type of the predicate and the type of list.

To express this, we use a type variable, such as X, and use it in different places to indicate
where the same type is needed.

> The contract for filter M14 37/41

filter consumes a list of type (listof X).

That implies that the predicate must consume an X. The predicate must also produce a
Boolean. It thus has a contract (and type!) of (X → Bool).

filter produces a list of the same type it consumes.

Therefore the contract for filter is:
;; filter: (X → Bool) (listof X) → (listof X)

Here X stands for the unknown data type of the list.

We say filter is polymorphic or generic; it works on many different types of data.



> Type variables M14 38/41

We have used type variables in contracts for a long time. For example, (listof X).

What is new is using the same variable multiple times in the same contract. This indicates a
relationship between parts of the contract. For example, filter’s list and predicate are
related.

We will soon see examples where more than one type variable is needed in a contract.

Type variable vs. Any

Recall from M08 that Any is just an abbreviation for (anyof Nat Int Num Sym Bool Str ...)

where ... is every other type in your program. Use a type variable unless the parameter
can always take (anyof Nat Int Num Symb Bool Str ...).

> Using contracts to understand M14 39/41

Many of the difficulties one encounters in using higher order functions can be overcome by
careful attention to contracts.

For example, the contract for the function provided as an argument to filter says that it
consumes one argument and produces a Boolean value.

This means we must take care to never use filter with an argument that is a function that
consumes two variables, or that produces a number.

E
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Write a version of insertion sort, (isort pred? lst), which consumes a predicate and
a (listof X) and produces lst in sorted order.

;; (isort pred? lst) sorts the elements of lst so that adjacent
;; elements satisfy pred?.
;; Examples:
(check-expect (isort < (list 3 4 2 5 1))

(list 1 2 3 4 5))
(check-expect (isort > (list 3 4 2 5 1))

(list 5 4 3 2 1))
(check-expect (isort string<? (list "can" "ban" "fan"))

(list "ban" "can" "fan"))

What is the contract for isort?



E
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Consider create-checker, a function which consumes a function, f, and a list of
numbers, answers. f consumes a string and produces a number. create-checker
produces a function that consumes a string. It produces true if f applied to the
argument produces a number that is in answers, and false otherwise. Write the
contract for create-checker.

E
x.

11

Here is a definition of a generalized tree where any node can have many children:

(define-struct gnode (key children))
;; A GT (Generalized Tree) is a (make-gnode Nat (listof GT))

Write a function tested-gt-sum which consumes a predicate and a GT. The predicate
consumes a Nat. The function tested-gt-sum produces the sum of all keys in the GT
for which the predicate produces true.
For example, when called with the predicate odd? and one of the following GTs, the
function produces 129.

81 66 48 11

37 12

78

81664811

3712

78

Goals of this module M14 40/41

You should understand the idea of functions as first-class values: how they can be
supplied as arguments, produced as values, bound to identifiers, and placed in lists and
structures.

You should understand how a function’s contract can be used as its type. You should
be able to write contracts for functions that consume and/or produce functions.



Summary: built-in functions M14 41/41

The following functions and special forms have been introduced in this module:

filter

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - ... / < <= = > >= abs add1 and append boolean? ceiling char-alphabetic?

char-downcase char-lower-case? char-numeric? char-upcase char-upper-case?
char-whitespace? char<=? char<? char=? char>=? char>? char? check-error check-expect
check-within cond cons cons? cos define define-struct define/trace e eighth else
empty? equal? error even? exp expt fifth filter first floor fourth integer? length
list list->string list? local log max min modulo negative? not number->string number?
odd? or pi positive? quotient remainder rest reverse round second seventh sgn sin
sixth sqr sqrt string->list string-append string-downcase string-length
string-lower-case? string-numeric? string-upcase string-upper-case? string<=? string<?
string=? string>=? string>? string? sub1 substring symbol=? symbol? tan third zero?


