
13: Local Definitions

Local definitions M13 2/42

The functions and special forms we’ve seen so far can be arbitrarily nested—except define
and check-expect.

So far, definitions have to be made “at the top level”, outside any expression.

The Intermediate language provides the special form local, which contains a series of local
definitions plus an expression using them.

(local [(define x_1 exp_1) ... (define x_n exp_n)] bodyexp)

What use is this?

Motivating local definitions M13 3/42

Consider Heron’s formula for the area of a triangle with sides a, b, c:
√

s(s − a)(s − b)(s − c), where s = (a + b + c)/2

It is not hard to create a Racket function to compute this function, but it is difficult to do so in
a clear and natural fashion.

We will describe several possibilities, starting with a direct implementation.



> Motivation: direct translation M13 4/42

(define (t-area-v0 a b c)
(sqrt
(* (/ (+ a b c) 2)

(- (/ (+ a b c) 2) a)
(- (/ (+ a b c) 2) b)
(- (/ (+ a b c) 2) c))))

The repeated computation of s = (a + b + c)/2 is awkward.

> Motivation: rewrite expressions M13 5/42

We could notice that s − a = (−a + b + c)/2, and make similar substitutions.

(define (t-area-v1 a b c)
(sqrt
(* (/ (+ a b c) 2)

(/ (+ (- a) b c) 2)
(/ (+ a (- b) c) 2)
(/ (+ a b (- c)) 2))))

This is slightly shorter, but its relationship to Heron’s formula is unclear from just reading the
code, and the technique does not generalize.

> Motivation: use a helper function (v1) M13 6/42

We could instead use a helper function.

(define (t-area-v2 a b c)
(sqrt
(* (s a b c)

(- (s a b c) a)
(- (s a b c) b)
(- (s a b c) c))))

(define (s a b c)
(/ (+ a b c) 2))

This generalizes well to formulas that
define several intermediate quantities.

But the helper functions need parameters,
which again makes the relationship to
Heron’s formula hard to see. And there’s
still repeated code and repeated
computations.



> Motivation: use a helper function (v2) M13 7/42

We could instead move the computation using s into a helper function, and provide the
value of s as a parameter.

(define (t-area-v3 a b c)
(t-area/s a b c (/ (+ a b c) 2)))

(define (t-area/s a b c s)
(sqrt (* s (- s a) (- s b) (- s c))))

This is more readable (it looks like Heron’s formula!), shorter, and avoids recomputation, but
it is still awkward because

the value of s is defined in one function and used in another.

t-area/s has no apparent use other than to support t-area-v3.

> Motivation: use local M13 8/42

The local special form we introduced provides a natural way to bring the definition and use
together.

(define (t-area-v4 a b c)
(local [(define s (/ (+ a b c) 2))]
(sqrt (* s (- s a) (- s b) (- s c)))))

This is nice and short!

It looks like Heron’s formula.

No repeated code or computations.

Since local is another special form (like
cond) that results in double parentheses,
we will use square brackets to improve
readability. This is another convention.

Reusing names M13 9/42

Local definitions permit reuse of names.
Reusing names is not new to us:

(define n 10)
(define (myfn n) (+ 2 n))
(myfn 6)

gives the answer 8, not 12.

The substitution specified in the semantics
of function application ensures that the
correct value is used while evaluating the
last line.

Similarly, a define within a local

expression may reuse a name which has
already been bound to another value or
expression.

The local substitution rules in our semantic
model must handle this.

(define x 5)
(define (fun a)
(local [(define x 3)]

(+ a x)))

The resulting substitution rule for local is
the most complicated one we will see in
this course.



> Informal substitution rule for local M13 10/42

The substitution rule works by replacing every name defined in the local with a fresh name
(a.k.a. fresh identifier) – a new, unique name that has not been used anywhere else in the
program.

Each old name within the local is replaced by the corresponding new name.

Because the new name hasn’t been used elsewhere in the program, the local definitions
(with the new name) can now be “promoted” to the top level of the program without affecting
anything outside of the local.

We can now use our existing rules to evaluate the program.

We will state the rule rigourously a little later.

Example 1 M13 11/42

(define x 5)
(define (fun a)
(local [(define x 3)] (+ a x)))

(fun 4) ⇒

(local [(define x 3)] (+ 4 x)) ⇒

(define x_1 3)
(+ 4 x_1) ⇒
(+ 4 3) ⇒
7

> Example2: evaluating t-area4 M13 12/42

We’ll need a fresh identifier to replace s. We’ll use s_1, which we just made up.

(t-area4 3 4 5) ⇒
(local [(define s (/ (+ 3 4 5) 2))]
(sqrt (* s (- s 3) (- s 4) (- s 5)))) ⇒

(define s_1 (/ (+ 3 4 5) 2))
(sqrt (* s_1 (- s_1 3) (- s_1 4) (- s_1 5))) ⇒
(define s_1 (/ 12 2))
(sqrt (* s_1 (- s_1 3) (- s_1 4) (- s_1 5))) ⇒
(define s_1 6)
(sqrt (* s_1 (- s_1 3) (- s_1 4) (- s_1 5))) ⇒ ... 6



Example 3: M13 13/42

(define (foo x)
(local [(define a (+ x x))

(define b (* x x))
(define c (+ a b))]

(+ a b c x)))
(foo 5) ⇒

(local [(define a (+ 5 5))
(define b (* 5 5))
(define c (+ a b))]

(+ a b c 5))) ⇒

(define a_1 (+ 5 5))
(define b_1 (* 5 5))
(define c_1 (+ a_1 b_1))
(+ a_1 b_1 c_1 5) ⇒ ... ⇒ 75

Example 4: Revising function substitution M13 14/42

Our previous statement about using our
existing rules isn’t quite correct. Consider
the code on the right.

Where is 2 substituted for x?

(define (foo x y)
(+ (local [(define x y)

(define z (+ x y))]
(+ x z))

x))

(foo 2 3)

(f v_1 ... v_n) ⇒ exp' where (define (f x_1 ... x_n) exp) occurs to the left, and exp'

is obtained by substituting into the expression exp, with all occurrences of the formal
parameter x_i replaced by the value v_i (for i from 1 to n) except where x_i has been
redefined within exp (e.g. within a local).

Example 5 M13 15/42

(define (foo x y)
(+ (local [(define x y)

(define z (+ x y))]
(+ x z))

(local [(define x (* 2 y))
(define z (* x y))]

(+ x z))))
(foo 2 3) ⇒ ...

(define x_1 3)
(define z_1 6)
(+ (+ x_1 z_1)

(local
[(define x (* 2 3))
(define z (* x 3))]
(+ x z))) ⇒ ...

(define x_1 3)
(define z_1 6)
(define x_2 (* 2 3))
(define z_2 (* x_2 3))
(+ 9 (+ x_2 z_2)) ⇒ ... ⇒ 33



E
x.

1

Write a function (check-msg-length to from body min-len max-len). to, from and
body are of type Str and represent a message. The length of the message is the
combined lengths of to, from, and body.
min-len and max-len are Nat values representing the minimum and maximum message
lengths allowed. The function produces 'too-short for messages shorter than min-len,
'too-long for messages longer than max-len, and otherwise the length of the message.

(check-expect (check-msg-length "Ed" "Santa" "Xmas List" 3 14) 'too-long)
(check-expect (check-msg-length "Ed" "Santa" "Xmas List" 3 140) 16)
(check-expect (check-msg-length "Charlie" "Santa" "No presents for Ed!"

140 280) 'too-short)

First implement this function without local. Then reimplement the function using local

to avoid computing the message length multiple times.

Reasons to use local M13 16/42

Clarity: Naming subexpressions

Efficiency: Avoid recomputation

Encapsulation: Hiding stuff

Scope: Reusing parameters

> Clarity: naming subexpressions M13 17/42

A subexpression used twice within a function body always yields the same value.

Using local to give the reused subexpression a name improves the readability of the code.

This was a motivating factor in t-area. Naming the subexpression made the relationship to
Heron’s Formula clear.

(define (t-area-v4 a b c)
(local [(define s (/ (+ a b c) 2))]
(sqrt (* s (- s a) (- s b) (- s c)))))



> Clarity: meaningful names M13 18/42

Sometimes we choose to use local in order to give subexpressions meaningful names to
make the code more readable, even if they are not reused. This may make the code longer.

(define-struct coord (x y))
(define (distance p1 p2)
(sqrt (+ (sqr (- (coord-x p1) (coord-x p2)))

(sqr (- (coord-y p1) (coord-y p2))))))

(define (distance p1 p2)
(local [(define delta-x (- (coord-x p1) (coord-x p2)))

(define delta-y (- (coord-y p1) (coord-y p2)))]
(sqrt (+ (sqr delta-x) (sqr delta-y)))))

> Efficiency: avoid recomputation M13 19/42

Recall that in lecture module 09, we saw a version of max-list that used the same recursive
application twice. The repeated computation of values caused it to be very slow, even for
lists of length 25.

We can use local to avoid recomputation.

» Efficiency: max-list without local M13 20/42

;; (max-list-v2 lon) produces the maximum element of lon
;; Examples:
(check-expect (max-list-v2 (list 6 2 3 7 1)) 7)

;; max-list-v2: (listof Num) → Num
;; Requires: lon is nonempty
(define (max-list-v2 lon)
(cond [(empty? (rest lon)) (first lon)]

[(> (first lon) (max-list-v2 (rest lon))) (first lon)]
[else (max-list-v2 (rest lon))]))



» Efficiency: max-list with local M13 21/42

;; (max-list-v4 lon) produces the maximum element of lon
;; Examples:
(check-expect (max-list-v4 (list 6 2 3 7 1)) 7)

;; max-list-v4: (listof Num) → Num
;; Requires: lon is nonempty
(define (max-list-v4 lon)
(cond [(empty? (rest lon)) (first lon)]

[else
(local [(define max-rest (max-list-v4 (rest lon)))]
(cond [(> (first lon) max-rest) (first lon)]

[else max-rest]))]))

» Efficiency: search-bt-path: original M13 22/42

;; search-bt-path: Nat BT → (anyof false (listof (anyof 'right 'left)))
(define (search-bt-path k tree)
(cond
[(empty? tree) false]
[(= k (node-key tree)) empty]
[(list? (search-bt-path k (node-left tree)))
(cons 'left (search-bt-path k (node-left tree)))]
[(list? (search-bt-path k (node-right tree)))
(cons 'right (search-bt-path k (node-right tree)))]
[else false]))

The efficiency problems of this code can be solved with a helper function.

» Efficiency: search-bt-path: with local M13 23/42

;; search-bt-path-v3: Nat BT → (anyof false (listof Sym))
(define (search-bt-path-v3 k bt)
(cond
[(empty? bt) false]
[(= k (node-key bt)) empty]
[else
(local [(define left-path (search-bt-path-v3 k (node-left bt)))

(define right-path (search-bt-path-v3 k (node-right bt)))]
(cond [(list? left-path) (cons 'left left-path)]

[(list? right-path) (cons 'right right-path)]
[else false]))]))



» Efficiency: search-bt-path: with local M13 24/42

This new version of search-bt-path avoids making the same recursive function application
twice, and does not require a helper function.

But it still suffers from an inefficiency: we always explore the entire binary tree, even if the
correct solution is found immediately in the left subtree.

We can avoid the extra search of the right subtree using nested locals.

» Efficiency: search-bt-path: with nested local M13 25/42

;; search-bt-path-v4: Nat BT → (anyof false (listof Sym))
(define (search-bt-path-v4 k bt)
(cond
[(empty? bt) false]
[(= k (node-key bt)) empty]
[else
(local [(define left-path (search-bt-path-v4 k (node-left bt)))]
(cond [(list? left-path) (cons 'left left-path)]

[else (local [(define right-path (search-bt-path-v4
k (node-right bt)))]

(cond [(list? right-path) (cons 'right right-path)]
[else false]))]))]))

> Encapsulation: hiding stuff M13 26/42

Encapsulation is the process of grouping things together in a “capsule”.

We have already seen data encapsulation in the use of structures: we grouped several
fields together into one “capsule”, the structure.

There is also an aspect of information hiding to encapsulation which we did not see with
structures.

The local bindings are not visible (have no effect) outside the local expression. Thus, they
can “hide” information from other parts of the program.

In CS 246 we will see how object-oriented programming combines data encapsulation
(structures) with another type of encapsulation we now discuss.



» Behaviour encapsulation M13 27/42

Local definitions can bind names to functions as well as values. Evaluating the local
expression creates new, unique names for the functions just as for the values.

This is known as behaviour encapsulation.

Behaviour encapsulation allows us to move helper functions within the function that uses
them, so they:

are invisible outside the function.

do not clutter the “namespace” at the top level.

cannot be used by mistake.

This makes the organization of the program more obvious and is particularly useful when
using accumulators.

» Example: sum-list M13 28/42

(define (sum-list lon)
(local [(define (sum-list/acc lst sofar)

(cond [(empty? lst) sofar]
[else (sum-list/acc (rest lst)

(+ (first lst) sofar))]))]
(sum-list/acc lon 0)))

Advantages of making the accumulatively-recursive helper function local:

It makes clear the helper has no use outside of sum-list.

It facilitates reasoning about the program.
In CS245 this reasoning will be extended to include invariants. They are also important in CS
240 and CS 341.

E
x.

2

Write a function (normalize lst) that consumes a (listof Num), and returns the list
containing each value in lst divided by the sum of the values in lst.
Use only local helper functions, and compute the sum only once.
(normalize (list 4 2 14)) ⇒ (list 0.2 0.1 0.7)



» Example: Insertion sort M13 29/42

(define (isort lon)
(local [(define (insert n slon)

(cond [(empty? slon) (cons n empty)]
[(<= n (first slon)) (cons n slon)]
[else (cons (first slon) (insert n (rest slon)))]))]

(cond [(empty? lon) empty]
[else (insert (first lon) (isort (rest lon)))])))

» Encapsulation and the design recipe M13 30/42

A function can enclose the cooperating helper functions that it uses inside a local, as long
as these are not also needed by other functions. When this happens, the enclosing function
and all the helpers act as a cohesive unit.

Here, the local helper functions require contracts and purposes, but not examples or tests.
The helper functions can be tested by writing suitable tests for the enclosing function.

Make sure the local helper functions are still tested completely!

» Design recipe example M13 31/42

;; Full Design Recipe for isort goes here...
(define (isort lon)
(local [;; (insert n slon) inserts n into slon, preserving the order

;; insert: Num (listof Num) → (listof Num)
;; Requires: slon is sorted in nondecreasing order
(define (insert n slon)
(cond [(empty? slon) (cons n empty)]

[(<= n (first slon)) (cons n slon)]
[else (cons (first slon) (insert n (rest slon)))]))]

(cond [(empty? lon) empty]
[else (insert (first lon) (isort (rest lon)))])))



Mutual Recursion M13 32/42

Local can also handle mutually recursive functions.

;; my-even?: Nat -> Bool
(define (my-even? n)
(local [(define (is-even? n)

(cond [(= n 0) true]
[else (is-odd? (sub1 n))]))

(define (is-odd? n)
(cond [(= n 0) false]

[else (is-even? (sub1 n))]))]
(is-even? n)))

> Scope: reusing parameters M13 33/42

Making helper functions local can reduce the need to have parameters “go along for the
ride”.

;; (countup-to-v1 n) produces a list of the numbers from 0 to n
;; Example:
(check-expect (countup-to-v1 5) (list 0 1 2 3 4 5))

;; countup-to-v1: Nat → (listof Nat)
(define (countup-to-v1 n)
(countup-from-to 0 n))

;; countup-from-to: Nat Nat → (listof Nat)
(define (countup-from-to from to)
(cond [(> from to) empty]

[else (cons from (countup-from-to (add1 from) to))]))

» Example: countup-to-v2 M13 34/42

;; (countup-to-v2 n) produces a list of the numbers from 0 to n
;; Example:
(check-expect (countup-to-v2 5) (list 0 1 2 3 4 5))

;; countup-to-v2: Nat → (listof Nat)
(define (countup-to-v2 n)
(local [(define (countup-from from)

(cond [(> from n) empty]
[else (cons from (countup-from (add1 from)))]))]

(countup-from 0)))

n no longer needs to be a parameter to countup-from, because it is in scope.

If we evaluate (countup-to-v2 10) using our substitution model, a renamed version of
countup-from with n replaced by 10 is lifted to the top level.

Then, if we evaluate (countup-to-v2 20), another renamed version of countup-from is lifted
to the top level.



E
x.

3
Using only one helper function, which is local and has only one parameter, write a
function (list-squares n) that produces a list containing the squares of the first n
natural numbers.

(check-expect (list-squares 4) (list 0 1 4 9))

» Example: mult-table M13 35/42

We can use the same idea to localize the helper functions for mult-table from lecture
module 08.

Recall that

(check-expect (mult-table 3 4)
(list (list 0 0 0 0)

(list 0 1 2 3)
(list 0 2 4 6)))

The cth entry of the r th row (numbering from 0) is r × c.

» mult-table: original M13 36/42

;; mult-table: Nat Nat → (listof (listof Nat))
(define (mult-table nr nc)
(generate-rows 0 nr nc))

;; (generate-rows r nr nc) produces mult. table, rows r...(nr-1)
;; rows-to: Nat Nat Nat → (listof (listof Nat))
(define (generate-rows r nr nc)
(cond [(>= r nr) empty]

[else (cons (make-a-row 0 r nc) (generate-rows (add1 r) nr nc))]))

;; (make-a-row c r nc) produces entries c...(nc-1) of rth row of mult. table

;; make-a-row: Nat Nat Nat → (listof Nat)
(define (make-a-row c r nc)
(cond [(>= c nc) empty]

[else (cons (* r c) (make-a-row (add1 c) r nc))]))



» mult-table: with local M13 37/42

(define (mult-table2 nr nc)
(local [;; (generate-rows r) produces mult. table, rows r...(nr-1)

;; generate-rows: Nat → (listof (listof Nat))
(define (generate-rows r)
(cond [(>= r nr) empty]

[else (cons (make-a-row 0 r) (generate-rows (add1 r)))]))

;; (make-a-row c r) produces entries c...(nc-1) of rth row
;; make-a-row: Nat Nat → (listof Nat)
(define (make-a-row c r)
(cond [(>= c nc) empty]

[else (cons (* r c) (make-a-row (add1 c) r))]))
]

(generate-rows 0)))
We will revisit this code again in M16.

E
x.

4 The implementation of mult-table2 encapsulates helper functions cols-to and rows-to

using local. Modify mult-table2 to further encapsulate cols-to into rows-to. What
parameters of cols-to are no longer necessary?

E
x.

5

Write a function (table-ccr nr nc) that produces a table containing nr rows and nc

columns, where the cth entry of the r th row is c2r .
For example,

(check-expect (table-ccr 4 5)
(list (list 0 0 0 0 0)

(list 0 1 4 9 16)
(list 0 2 8 18 32)
(list 0 3 12 27 48)))

Helper functions should be encapulated within a local, of course.



Terminology associated with local M13 38/42

The binding occurrence of a name is its use in a definition, or formal parameter to a
function.

The associated bound occurrences are the uses of that name that correspond to that
binding.

The lexical scope of a binding occurrence is all places where that binding has effect, taking
note of holes caused by reuse of names.

Global scope is the scope of top-level definitions.

Substitution rule M13 39/42

An expression of the form (local [d_1 ... d_n] bodyexp) is rewritten as follows:

d_i will be of the form (define x_i exp_i) or
(define (x_i p_1 ... p_m) exp_i). In either case, x_i is replaced with a fresh
identifier (call it x_i_new) everywhere in the local expression, for 1 ≤ i ≤ n.

The definitions d_1 ... d_n are then lifted out (all at once) to the top level of the
program, preserving their ordering.

What remains looks like (local [] bodyexp'), where bodyexp' is the rewritten
version of bodyexp. Replace the local expression with bodyexp'.

All of this (the renaming, the lifting, and removing the local with an empty definitions
list) is a single step.

Conclusions M13 40/42

The use of local has permitted modest gains in expressivity and readability in our
examples.

The language features discussed in the next module expand this power considerably.

Some other languages (C, C++, Java) either disallow nested function definitions or allow
them only in very restricted circumstances.

Local variable and constant definitions are much more common.



Goals of this module M13 41/42

You should understand the syntax, informal semantics, and formal substitution
semantics for the local special form.

You should be able to use local to avoid repetition of common subexpressions, to
improve readability of expressions, and to improve efficiency of code.

You should understand the idea of encapsulation of local helper functions.

You should be able to match the use of any constant or function name in a program to
the binding to which it refers.

Summary: built-in functions M13 42/42

The following functions and special forms have been introduced in this module:

local

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - ... / < <= = > >= abs add1 and append boolean? ceiling char-alphabetic?

char-downcase char-lower-case? char-numeric? char-upcase char-upper-case?
char-whitespace? char<=? char<? char=? char>=? char>? char? check-error check-expect
check-within cond cons cons? cos define define-struct define/trace e eighth else
empty? equal? error even? exp expt fifth first floor fourth integer? length list
list->string list? local log max min modulo negative? not number->string number? odd?
or pi positive? quotient remainder rest reverse round second seventh sgn sin sixth sqr
sqrt string->list string-append string-downcase string-length string-lower-case?
string-numeric? string-upcase string-upper-case? string<=? string<? string=? string>=?
string>? string? sub1 substring symbol=? symbol? tan third zero?


