
10: Binary Trees

Binary Trees M10 2/45

We now want to be able to store information in more complicated ways.

It turns out that the structure of a tree has many, many applications in computer science.
Sometimes trees work well because the problem itself has a tree-like structure. Sometimes
trees work well because we can impose a tree-like structure on the problem in a way that
allows our code to run faster, often dramatically so.

You will see trees used in many contexts in future courses.

> Example: binary expression trees M10 3/45

The expression ((2 ∗ 6) + (5 ∗ 2))/(5 − 3) can be represented as a tree:

/
+ -

35
* *

2562



> Example: Phylogenetic trees M10 4/45

This phylogenetic tree
tracks the evolution of
COVID-19 in the first four
months of the recent
pandemic.
Image: nextstrain.org/ncov

> Tree terminology (1/2) M10 5/45

nodesroot

edges

parent

childchild

A tree is a set of nodes and edges where an edge
connects two distinct nodes.
A tree has three requirements:

One node is identified as the root.

Every node c other than the root is connected by an
edge to some other node p. p is called the parent and
c is called the child.

A tree is connected:
for every node n other than the root,
the parent of n or
the parent of the parent of n or
the parent of the parent ... of n will be the root.

> Tree terminology (2/2) M10 6/45

8

14
labels

leaves

internal nodes

subtree

Other useful terms:

leaves: nodes with no children

internal nodes: nodes that have children

labels: data attached to a node

ancestors of node n: n itself, the parent of n, the
parent of the parent of n, etc. up to the root

descendents of n: all the nodes that have n as an
ancestor (which includes n)

subtree rooted at n: all of the descendents of n



> Characteristics of trees M10 7/45

Number of children of internal nodes:
exactly two
at most two
any number

Labels:
on all nodes
just on leaves

Order of children (matters or not)

Tree structure (from data or for
convenience)

/
+ -

35
* *

2562

Binary trees M10 8/45

A binary tree is a tree with at most two children for each node.

Binary trees are a fundamental part of computer science, independent of what language
you use.

Binary arithmetic expression trees and phylogenetic trees are both examples of binary trees.

We’ll start with the simplest possible binary tree. It could be used to store a set of natural
numbers.

> Drawing binary trees M10 9/45

5

71

146

5
1 7

146

We will consistently use Nats in our binary trees, but we could use symbols, strings,
structures, ...

CS135 tends to use drawings like on the right; it’s more succinct and easier to draw.
However, it omits empty subtrees.



> Binary tree data definition M10 10/45

(define-struct node (key left right))
;; A Node is a (make-node Nat BT BT)

;; A binary tree (BT) is one of:
;; * empty
;; * Node

The node’s label is called “key” in anticipation of using binary trees to implement
dictionaries.

How are trees encoded using the node structure? What is the template?

Sample Trees M10 11/45

An empty tree
empty

5
1 7

146

(make-node 5 empty empty)

5
1 7

146

(make-node 5 (make-node 1 empty empty)
empty)

5
1 7

146

(make-node 5 (make-node 1 empty empty)
(make-node 7 empty empty))

5
1 7

146

(make-node 5 (make-node 1 empty empty)
(make-node 7 (make-node 6 empty empty)

(make-node 14 empty empty)))

Aside: Tips for building templates M10 12/45

Follow the data definition. For each part of the data definition, if it

says “one of”, include a cond to distinguish the cases.

is a simple type (Int, Str, Sym, empty, etc), do nothing.

is a defined data type, apply that type’s template.

is compound data (a structure, fixed-length list), extract each of the fields, in order.

is a listof, extract the first and rest of the list.

Add elipses (. . . ) around each of the above.

Apply the above recursively.



> Binary tree template M10 13/45

(define-struct node (key left right))
;; A Node is a (make-node Nat BT BT)

;; A binary tree (BT) is one of:
;; * empty
;; * Node

;; bt-template: BT → Any
(define (bt-template bt)

> Example: sum-keys M10 14/45

;; (sum-keys bt) sums the keys in bt.
;; Examples
(check-expect (sum-keys empty) 0)
(check-expect (sum-keys (make-node 10 empty empty)) 10)
(check-expect (sum-keys (make-node 10

(make-node 5 empty empty)
empty)) 15)

;; sum-keys: BT → Nat
(define (sum-keys bt)

Key Questions M10 15/45

We had four key questions for recursion on a list and four very similar questions for
recursion on a natural number. What are the equivalent questions for a tree?

1 What should the function produce in
the base case?

2 What should calling the function on the
rest of the list produce?

3 What should the function do to the first
element in a non-empty list?

4 How should the function combine #2
and #3 to produce the answer for the
entire list?

1 What should the function produce in
the base case?

2 What should calling the function on the
left subtree produce?

3 What should calling the function on the
right subtree produce?

4 What should the function do to the root
node in a non-empty tree?

5 How should the function combine #2,
#3, and #4 to produce the answer for
the entire tree?



> Example: count-nodes M10 16/45

(define test-tree (make-node 5 (make-node 1 ...
(make-node 1 ...))))

;; (count-nodes tree k) counts the number of nodes in the tree that
;; have a key equal to k.
(check-expect (count-nodes empty 5) 0)
(check-expect (count-nodes test-tree 1) 3)

;; count-nodes: BT Nat → Nat
(define (count-nodes tree k)
(cond [(empty? tree) 0]

[(node? tree) (+ (cond [(= k (node-key tree)) 1]
[else 0])

(count-nodes (node-left tree) k)
(count-nodes (node-right tree) k))]))

5
1

6

1

6 13 3

4

> Example: Increment keys M10 17/45

;; (increment tree) adds 1 to each key in the tree.
;; increment: BT → BT
(define (increment tree)
(cond
[(empty? tree) empty]
[(node? tree) (make-node (add1 (node-key tree))

(increment (node-left tree))
(increment (node-right tree)))]))

E
x.

1

Write (count-leaves t) which consumes a binary tree and produces the number of
leaf nodes.

E
x.

2

Write (count-evens t) which consumes a binary tree and produces the number of
nodes with an even key.

E
x.

3

Write (reverse-tree t) which consumes a binary tree and produces a new tree that
has the same keys as t but every node has the left and right subtrees reversed (the left
subtree becomes the right; the right subtree becomes the left).



> Searching binary trees M10 18/45

We are now ready to search our binary tree for a given key. It will produce true if the key is
in the tree and false otherwise.

1 What should the function produce in the base case?

2 What should calling the function on the left subtree produce?

3 What should calling the function on the right subtree produce?

4 What should the function do to the root node in a non-empty tree?

5 How should the function combine #2, #3, and #4 to produce the answer for the entire
tree?

> Searching binary trees M10 19/45

Now we can fill in our BT template to write our search function:

;; (search k tree) produces true if k is in tree; false otherwise.
;; search: Nat BT → Bool
(define (search-bt k tree)
(cond [(empty? tree) false]

[else (or (= k (node-key tree))
(search-bt k (node-left tree))
(search-bt k (node-right tree)))]))

Is this more efficient than searching a list?

> Find the path to a key M10 20/45

Write a function, search-bt-path, that
searches for an item in the tree. As before,
it will return false if the item is not found.
However, if it is found search-bt-path will
return a list of the symbols 'left and
'right indicating the path from the root to
the item.

Assume, for now, that the tree does not
contain duplicates.

6
3 10

72 45

9 5
The path from the root to 9 is
(list 'right 'right 'left).



> Find the path to a key M10 21/45

(define test-tree
(make-node 6 (make-node 3 ...)

(make-node 10 ...)))

6
3 10

72 45

9 5
(check-expect (search-bt-path 0 empty) false)
(check-expect (search-bt-path 6 test-tree) empty)
(check-expect (search-bt-path 3 test-tree) (list 'left))
(check-expect (search-bt-path 9 test-tree) (list 'right 'right 'left))
(check-expect (search-bt-path 0 test-tree) false)

> search-bt-path M10 22/45

;; search-bt-path: Nat BT → (anyof false (listof (anyof 'right 'left)))
(define (search-bt-path k tree)
(cond
[(empty? tree) false]
[(= k (node-key tree)) empty]
[(list? (search-bt-path k (node-left tree)))
(cons 'left (search-bt-path k (node-left tree)))]
[(list? (search-bt-path k (node-right tree)))
(cons 'right (search-bt-path k (node-right tree)))]
[else false]))

Double calls to search-bt-path. Uggh!

> Improved search-bt-path M10 23/45

;; search-bt-path: Nat BT → (anyof false (listof (anyof 'right 'left)))
(define (search-bt-path-v2 k tree)
(cond
[(empty? tree) false]
[(= k (node-key tree)) empty]
[else (choose-path-v2 (search-bt-path-v2 k (node-left tree))

(search-bt-path-v2 k (node-right tree)))]))

(define (choose-path-v2 left-path right-path)
(cond [(list? left-path) (cons 'left left-path)]

[(list? right-path) (cons 'right right-path)]
[else false]))



E
x.

4
Write insert-path which consumes a binary tree, a path such as
(list 'left 'left 'right) and a value. It produces the same binary tree but with the
new value in the node reached by the path in the second argument. Assume that the
path reaches a non-empty node in the tree.

E
x.

5

Write add-path which consumes a binary tree, a path such as
(list 'left 'left 'right) and a value. It produces the same binary tree but with the
new value inserted into the tree at the end of the path. If the path ends at an interior
node, that node is replaced by a new node containing the new value, the existing node
as the left subtree, and an empty right subtree.

Binary search trees M10 24/45

We will now make one change that can make searching much more efficient. This change
will create a tree structure known as a binary search tree (BST).

For any given collection of keys, there is more than one possible tree.

How the keys are placed in a tree can improve the running time of searching the tree when
compared to searching the same items in a list.

BST Data Definitions M10 25/45

;; A Binary Search Tree (BST) is one of:
;; ⋆ empty
;; ⋆ a Node

(define-struct node (key left right))
;; A Node is a (make-node Nat BST BST)
;; Requires: key > every key in left BST
;; key < every key in right BST

The BST ordering property:

key is greater than every key in left.

key is less than every key in right.

Note: the ordering property holds in every subtree



> A BST example M10 26/45

(make-node 5
(make-node 1 empty empty)
(make-node 7

(make-node 6 empty empty)
(make-node 14 empty empty)))

5
1 7

146
5

71

146

There can be several BSTs holding a particular set of keys.

5

1 14

6

5
1 7

146

77
5 14

61

> Making use of the ordering property M10 28/45

Main advantage: for certain computations, one of the recursive function applications in the
template can always be avoided.

This is more efficient (sometimes considerably so).

In the following slides, we will demonstrate this advantage for searching and adding.



> Searching in a BST M10 29/45

How do we search for a key n in a BST? We reason using the data definition of BST.

If the BST is empty, then n is not in the BST.

If the BST is of the form (make-node k left right), and k equals n,
then we have found it.
Otherwise it might be in either the left or right subtree.

If n < k, then n must be in left if it is present at all,
and we only need to recursively search in left.
If n > k, then n must be in right if it is present at all,
and we only need to recursively search in right.

Either way, we save one recursive function application.

5

1 6

140 3

search-bst M10 30/45

;; (search-bst n t) produces true if n is in t; false otherwise.
;; search-bst: Nat BST → Bool
(define (search-bst n t)
(cond[(empty? t) false]

[(= n (node-key t)) true]
[(< n (node-key t)) (search-bst n (node-left t))]
[(> n (node-key t)) (search-bst n (node-right t))]))

5

1 6

140 3

E
x.

6

Write a function (count-smaller n t) that consumes a Nat and a BST, and returns the
number of keys in t that are less than n.

(define example
(make-node 5

(make-node 1 empty empty)
(make-node 7

(make-node 6 empty empty)
(make-node 14 empty empty))))

(check-expect (count-smaller 8 example) 4)
(check-expect (count-smaller 1 example) 0)
(check-expect (count-smaller 100 example) 5)

For efficiency: don’t always search both children!



> Adding to a BST M10 31/45

How do we add a new key, n, to a BST t?

Reasoning from the data definition for a BST:

If t is empty, then the result is a BST with only one node containing n.

If t is of the form (make-node k left right) and k = n, the key is already in the tree
and we can simply produce t.
Otherwise, n must go in either the left or right subtree.

If n < k, then the new key must be added to left.
If n > k, then the new key must be added to right.

Again, we need only make one recursive function application.

> Creating a BST from a list M10 32/45

Consider a function, build-bst-from-list, which builds a BST from a list of keys. How
would it work?

We reason using the data definition of a list.

If the list is empty, the BST is empty.

If the list is of the form (cons k lst), we add the key k to the BST created from the list lst.
The first key in the list is inserted last.

We could use accumulative recursion to insert the keys in the opposite order.

> Binary search trees in practice M10 33/45

If the BST has all left subtrees empty, it looks and behaves like a sorted list, and the
advantage is lost.

In later courses, you will see ways to keep a BST “balanced” so that “most” nodes have
nonempty left and right children. We will also cover better ways to analyze the efficiency of
algorithms and operations on data structures.



E
x.

7
Practise problems on binary search trees:

Write a function, bst-min, which consumes a non-empty BST and produces the
minimum value in the tree.

Write a function, bst-max, which consumes a non-empty BST and produces the
maximum value in the tree.

Write a function, bst-add, which consumes a BST, t, and a new key, n. It produces
a BST with all of the keys found in t as well as n. If n happens to already exist in t

it produces a BST just like t.

Write a function, bst-from-list, which consumes a (listof Nat) and produces a
BST containing those same values. Use simple recursion.

Write a function, bst-from-list/acc, which consumes a (listof Nat) and
produces a BST containing those same values. Use accumulative recursion.

Rewrite search-bst without a cond (using a single Boolean expression).

Augmenting trees M10 34/45

So far nodes have been (define-struct node (key left right)).

We can augment the node with additional data:
(define-struct node (key val left right)).

The name val is arbitrary – choose any name you like.

The type of val is also arbitrary: could be a number, string, structure, etc.

You could augment with multiple values.

The set of keys remains unique.

The tree could have duplicate values.

BST dictionaries M10 35/45

An augmented BST can serve as a dictionary that can perform significantly better than an
association list.

Recall from Module 08 that a dictionary stores a set of (key, value) pairs, with at most one
occurrence of any key. A dictionary supports lookup (a.k.a search), add, and remove

operations.

We implemented dictionaries using an association list, a list of two-element lists. Seach
could be inefficient for large lists.

We need to modify node to include the value associated with the key. search needs to return
the associated value, if found.



> search-bst-dict M10 36/45

(define-struct node (key val left right))
;; A binary search tree dictionary (BSTD) is either:
;; * empty
;; * (make-node Nat Str BSTD BSTD)

;; (search-bst-dict k t) produces the value associated with k
;; if k is in t; false otherwise.
;; search-bst-dict: Nat BSTD → (anyof Str false)
(define (search-bst-dict k t)
(cond[(empty? t) false]

[(= k (node-key t)) (node-val t)]
[(< k (node-key t)) (search-bst-dict k (node-left t))]
[(> k (node-key t)) (search-bst-dict k (node-right t))]))

> search-bst-dict tests M10 37/45

(define test-tree (make-node 5 "Susan"
(make-node 1 "Juan" empty empty)
(make-node 14 "David"

(make-node 6 "Lucy" empty empty)
empty)))

(check-expect (search-bst-dict 5 empty) false)
(check-expect (search-bst-dict 5 test-tree) "Susan")
(check-expect (search-bst-dict 6 test-tree) "Lucy")
(check-expect (search-bst-dict 2 test-tree) false)

Binary arithmetic expression trees M10 38/45

The expression ((2 ∗ 6) + (5 ∗ 2))/(5 − 3) can be represented as a
binary expression tree.

Internal nodes each have exactly
two children.

Leaves have number labels.

Internal nodes have symbol labels.

We care about the order of children.

The structure of the tree is dictated
by the expression.

/
+ -

35
* *

2562



> Representing binary arithmetic expressions M10 39/45

(define-struct binode (op left right))
;; A Binary arithmetic expression Internal Node (BINode)
;; is a (make-binode (anyof '* '+ '/ '-) BinExp BinExp)

;; A binary arithmetic expression (BinExp) is one of:
;; * a Num
;; * a BINode

Some examples of binary arithmetic expressions:
5
(make-binode '* 2 6)
(make-binode '+ 2 (make-binode '- 5 3))
(make-binode '/

(make-binode '+ (make-binode '* 2 6)
(make-binode '* 5 2))

(make-binode '- 5 3))

/
+ -

35
* *

2562

> Templates for binary arithmetic expressions M10 40/45

(define-struct binode (op left right))
;; A BINode is a (make-binode (anyof '* '+ '/ '-) BinExp BinExp)

;; A binary arithmetic expression (BinExp) is one of:
;; * a Num
;; * a BINode

;; binode-template: BINode → Any
(define (binode-template node)
(... (binode-op node)

(binexp-template (binode-left node))
(binexp-template (binode-right node))))

;; binexp-template: BinExp → Any
(define (binexp-template ex)
(cond [(number? ex) (... ex)]

[(binode? ex) (binode-template ex)]))

> Evaluating expressions (1/2) M10 41/45

;; (eval ex) evaluates the expression ex and produces its value.
(check-expect (eval 5) 5)
(check-expect (eval (make-binode '+ 2 5)) 7)
(check-expect (eval (make-binode '/ (make-binode '- 10 2)

(make-binode '+ 2 2))) 2)

;; eval: BinExp → Num
(define (eval ex)
(cond [(number? ex) ex]

[(binode? ex) (eval-binode ex)]))



> Evaluating expressions (2/2) M10 42/45

;; (eval-binode node) evaluates the expression represented by node.
;; eval-binode: BINode → Num
(define (eval-binode node)
(cond [(symbol=? '* (binode-op node))

(* (eval (binode-left node)) (eval (binode-right node)))]
[(symbol=? '/ (binode-op node))
(/ (eval (binode-left node)) (eval (binode-right node)))]
[(symbol=? '+ (binode-op node))
(+ (eval (binode-left node)) (eval (binode-right node)))]
[(symbol=? '- (binode-op node))
(- (eval (binode-left node)) (eval (binode-right node)))]))

» Eval, refactored M10 43/45

(define (eval ex)
(cond [(number? ex) ex]

[(binode? ex) (eval-binode (binode-op ex)
(eval (binode-left ex))
(eval (binode-right ex)))]))

(define (eval-binode op left-val right-val)
(cond [(symbol=? op '*) (* left-val right-val)]

[(symbol=? op '/) (/ left-val right-val)]
[(symbol=? op '+) (+ left-val right-val)]
[(symbol=? op '-) (- left-val right-val)]))

Goals of this module M10 44/45

You should be familiar with tree terminology.

You should understand the data definitions for binary trees, binary search trees, and
binary arithmetic expressions.

You should understand how the templates are derived from those definitions, and how
to use the templates to write functions that consume those types of data.

You should understand the definition of a binary search tree and its ordering property.

You should be able to write functions which consume binary search trees, including
those sketched (but not developed fully) in lecture.

You should be able to develop and use templates for other binary trees, not necessarily
presented in lecture.

You should understand binary expression trees and be able to extend them to handle
more operations.



Summary: built-in functions M10 45/45

The following functions and special forms have been introduced in this module:

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - ... / < <= = > >= abs add1 and append boolean? ceiling char-alphabetic?

char-downcase char-lower-case? char-numeric? char-upcase char-upper-case?
char-whitespace? char<=? char<? char=? char>=? char>? char? check-error check-expect
check-within cond cons cons? cos define define-struct define/trace e eighth else
empty? equal? error even? exp expt fifth first floor fourth integer? length list
list->string list? log max min modulo negative? not number->string number? odd? or pi
positive? quotient remainder rest reverse round second seventh sgn sin sixth sqr sqrt
string->list string-append string-downcase string-length string-lower-case?
string-numeric? string-upcase string-upper-case? string<=? string<? string=? string>=?
string>? string? sub1 substring symbol=? symbol? tan third zero?


