
09: Patterns of Recursion

Simple vs. general recursion M09 2/26

All of the recursion we have done to date has followed a pattern we call simple recursion.

The templates we have been using have been derived from a data definition and specify the
form of the recursive application.

We will now learn to use a new pattern of recursion, accumulative recursion, and learn to
recognize mutual recursion and generative recursion.

For the next several lecture modules we will use simple recursion and accumulative
recursion. We will avoid mutual recursion and generative recursion until later in the course.

Simple recursion M09 3/26

Recall from Module 06:

In simple recursion, every argument in a recursive function application (or applications, if
there are more than one) are either:

unchanged, or

one step closer to a base case, using the inverse of the function in the data definition.



> The limits of simple recursion M09 4/26

;; (max-list-v1 lon) produces the maximum element of lon
(check-expect (max-list-v1 (list 6 2 3 7 1)) 7)

;; max-list-v1: (listof Num) → Num
;; Requires: lon is nonempty
(define (max-list-v1 lon)
(cond [(empty? (rest lon)) (first lon)]

[else (max (first lon) (max-list-v1 (rest lon)))]))

“In-lining” max:

(define (max-list-v2 lon)
(cond [(empty? (rest lon)) (first lon)]

[(> (first lon) (max-list-v2 (rest lon))) (first lon)]
[else (max-list-v2 (rest lon))]))

There may be two recursive applications of max-list-v2.

> max-list is slow M09 5/26

The code for max-list-v2 is correct.

But computing (max-list-v2 (countup-to 1 25)) is very slow.

Why?

The initial application is on a list of length 25.

There are two recursive applications on the rest of this list, which is of length 24.

Each of those makes two recursive applications.

> “Exponential blowup” M09 6/26

3

2

1

2

1 1 1

list-max

4=23-1

2=23-2

1=23-3
25

24

23

24

23 23 23

list-max

... ... ... ... ... ... ... ...

max-list can make up to 2n − 1 recursive applications on a list of length n.

We informally call this exponential blowup.



> Measuring efficiency M09 7/26

We can take the number of recursive applications as a rough measure of a function’s
efficiency. max-list-v2 can take up to 2n − 1 recursive applications.

length makes n recursive applications on a list of length n.

length is clearly more efficient than max-list-v2.

We say that length’s efficiency is proportional to n and max-list-v2’s efficiency is
proportional to 2n. We express the former as O(n) and the later as O(2n).

> Measuring efficiency M09 8/26

There are “families” of algorithms with similar efficiencies. Examples, from most efficient to
least:

“Big-O” Example
O(1) no recursive calls; tax-payable [M04]
O(log2 n) divide in half, work on one half; binary-search on a balanced tree [M10]
O(n) one recursive application for each item; length, max-list-v1 [M06,09]
O(n log2 n) divide in half, work on both halves; mergesort [M08]
O(n2) an O(n) application for each item; insertion-sort [M06]
O(2n) two recursive applications for each item; max-list-v2 [M09]

Much more about “Big-O” notation and efficiency in later courses.

> Recap M09 9/26

Fast O(n)

(define (max-list-v1 lon)
(cond [(empty? (rest lon)) (first lon)]

[else (max (first lon) (max-list-v1 (rest lon)))]))

Slow O(2n)

(define (max-list-v2 lon)
(cond [(empty? (rest lon)) (first lon)]

[(> (first lon) (max-list-v2 (rest lon))) (first lon)]
[else (max-list-v2 (rest lon))]))



A human approach M09 10/26

Humans don’t seem to use either of the two versions of max-list shown earlier.

Instead, we tend to find the maximum of a list of numbers by scanning it, remembering the
largest value seen so far. When we see a value that’s larger than the largest seen so far, we
remember the new value – until we see one that is still larger. When we get to the end of the
list, the largest value seen so far is the largest value in the list.

Accumulative recursion M09 11/26

Computationally, we can pass down that largest value seen so far as a parameter called an
accumulator.

This parameter accumulates the result of prior computation, and is used to compute the
final answer that is produced in the base case.

This approach results in the code on the next slide.

> max-list/acc M09 12/26

(define (max-list-v3 lon)
(max-list/acc (rest lon) (first lon)))

;; (max-list/acc lon max-so-far) produces the largest
;; of the maximum element of lon and max-so-far

;; max-list/acc: (listof Num) Num → Num
(define (max-list/acc lon max-so-far)
(cond [(empty? lon) max-so-far]

[(> (first lon) max-so-far)
(max-list/acc (rest lon) (first lon))]
[else (max-list/acc (rest lon) max-so-far)]))



> Tracing max-list/acc M09 13/26

Now even (max-list-v3 (countup-to 1 200000)) is fast.

(max-list-v3 (list 1 2 3 9 5))
⇒ (max-list/acc (list 2 3 9 5) 1)
⇒ (max-list/acc (list 3 9 5) 2)
⇒ (max-list/acc (list 9 5) 3)
⇒ (max-list/acc (list 5) 9)
⇒ (max-list/acc (list ) 9)
⇒ 9

> Accumulative recursion M09 14/26

This technique is known as accumulative recursion.

It is more difficult to develop and reason about such code, which is why simple recursion is
preferable if it is appropriate.

> Indicators of the accumulative recursion pattern M09 15/26

All arguments to recursive function applications are:
unchanged, or
one step closer to a base case in the data definition, or
a partial answer (passed in an accumulator).

The value(s) in the accumulator(s) are used in one or more base cases.

The accumulatively recursive function usually has a wrapper function that sets the initial
value of the accumulator(s).



> Another accumulative example: reversing a list M09 16/26

Using simple recursion:

;; (my-reverse lst) reverses lst using simple recursion
(check-expect (my-reverse (list 1 2 3)) (list 3 2 1))

;; my-reverse: (listof X) → (listof X)
(define (my-reverse lst)
(cond
[(empty? lst) empty]
[else (append (my-reverse (rest lst))

(list (first lst)))]))

Intuitively, append does too much work in repeatedly moving over the produced list to add
one element at the end.

This has the same worst-case behaviour as insertion sort, O(n2).

» Reversing a list with an accumulator M09 17/26

;; (my-reverse lst) reverses lst
(check-expect (my-reverse (list 1 2 3)) (list 3 2 1))

;; my-reverse: (listof X) → (listof X)
(define (my-reverse lst)
(my-rev/acc lst empty))

;; (my-rev/acc lst acc) produces the reverse of [lst] followed by [acc].
(check-expect (my-rev/acc (list 3 4) (list 2 1)) (list 4 3 2 1))
;; my-rev/acc: (listof X) (listof X) -> (listof X)
(define (my-rev/acc lst acc)
(cond [(empty? lst) acc]

[else (my-rev/acc (rest lst) ; transfer first element to accumulator
(cons (first lst) acc))]))

This is O(n).

» A condensed trace M09 18/26

(my-reverse (list 1 2 3 4 5))
⇒ (my-rev/acc (list 1 2 3 4 5) empty)
⇒ (my-rev/acc (list 2 3 4 5) (cons 1 empty))
⇒ (my-rev/acc (list 3 4 5) (cons 2 (list 1)))
⇒ (my-rev/acc (list 4 5) (cons 3 (list 2 1)))
⇒ (my-rev/acc (list 5) (cons 4 (list 3 2 1)))
⇒ (my-rev/acc (list ) (cons 5 (list 4 3 2 1)))
⇒ (list 5 4 3 2 1)



Fibonacci with an accumulator M09 19/26

The nth Fibonacci number is the sum of the two previous Fibonacci numbers:

f0 = 0, f1 = 1, fn = fn−1 + fn−2,n ≥ 2

This can be implemented directly using simple recursion, as follows:

(define (fib n)
(cond [(< n 2) n]

[else (+ (fib (- n 1)) (fib (- n 2)))]))

This works: (fib 6) ⇒ 8, (fib 25) ⇒ 75025. But (fib 50) takes days!

It suffers from exponential blowup.

As it turns out, not 2n, but ϕn, where ϕ = 1+
√

5
2 is the Golden Ratio.

Using an accumulator avoids the exponential blowup. How can we do that?

E
x.

1

Write a function (extend-fib n lst) that consumes a Nat and a (listof Nat). Given
lst, a list containing at least 2 Fibonacci values in non-increasing order, it returns a list
containing n more Fibonacci values.

E
x.

2

Write a function (fiba n) that is a wrapper for extend-fib, and produces the nth
Fibonacci number.

(check-expect (fib-a 2) (fib-b 2))
(check-expect (fib-a 5) (fib-b 5))
(check-expect (fib-a 20) (fib-b 20))

E
x.

3 Given a (listof Num), use accumulative recursion to write mean, which produces the
average (mean) of the list.

H
in

t mean will be a wrapper function.

How many accumulators do you need?



Mutual recursion M09 20/26

Mutual recursion occurs when two or more functions
apply each other: f applies g and g applies f.

;; A two-player game
(define (game state)
(a-turn state))

(define (a-turn state)
(cond [(a-won? state) 'A-WON]

[else (b-turn (strategy-a state))]))

(define (b-turn state)
(cond [(b-won? state) 'B-WON]

[else (a-turn (strategy-b state))]))

Image: Drawing Hands, M.C. Escher
https://mcescher.com/

Generative Recursion: GCD M09 21/26

In Math 135, you learn that the Euclidean algorithm for Greatest Common Divisor (GCD)
can be derived from the following identity for m > 0:

gcd(n,m) = gcd(m,n mod m)

We also have gcd(n,0) = n.

We can turn this reasoning directly into a Racket function.

> euclid-gcd M09 22/26

;; (euclid-gcd n m) computes gcd(n,m) using Euclidean algorithm

;; euclid-gcd: Nat Nat → Nat
(define (euclid-gcd n m)
(cond [(zero? m) n]

[else (euclid-gcd m (remainder n m))]))

This function does not use simple, mutual or accumulative recursion.



> Generative recursion M09 23/26

The arguments in the recursive application were generated by doing a computation on m

and n.

The function euclid-gcd uses generative recursion.

Once again, functions using generative recursion are easier to get wrong, harder to debug,
and harder to reason about.

We will return to generative recursion in a later lecture module. Avoid generative recursion
until then.

Simple vs. accumulative vs. mutual vs. generative recursion M09 24/26

In simple recursion, all arguments to the recursive function application (or applications, if
there are more than one) are either unchanged, or one step closer to a base case in the
data definition.

In accumulative recursion, parameters are as above, plus parameters containing partial
answers used in the base case.

In mutual recursion, two or more functions call each other. Parameters usually behave as
in simple recursion, but that is not required.

In generative recursion, parameters are freely calculated at each step.

Goals of this module M09 25/26

You should be able to recognize uses of simple recursion, accumulative recursion,
mutual recursion and generative recursion.

You should be able to write functions using simple and accumulative recursion.

You should know that some functions are much more efficient than others, that
efficiency is expressed with “Big-O” notation, and that you’ll learn more about this in
future courses.

You should be able to identify and avoid “exponential blowup”.



Summary: built-in functions M09 26/26

The following functions and special forms have been introduced in this module:

reverse

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - ... / < <= = > >= abs add1 and append boolean? ceiling char-alphabetic?

char-downcase char-lower-case? char-numeric? char-upcase char-upper-case?
char-whitespace? char<=? char<? char=? char>=? char>? char? check-error check-expect
check-within cond cons cons? cos define define-struct define/trace e eighth else
empty? equal? error even? exp expt fifth first floor fourth integer? length list
list->string list? log max min modulo negative? not number->string number? odd? or pi
positive? quotient remainder rest reverse round second seventh sgn sin sixth sqr sqrt
string->list string-append string-downcase string-length string-lower-case?
string-numeric? string-upcase string-upper-case? string<=? string<? string=? string>=?
string>? string? sub1 substring symbol=? symbol? tan third zero?


