
08: More Lists

Fixed-length lists M08 2/64

In Module 06 we introduced unbounded lists. A wish list, for example, could have any
number of items – including none. Unbounded lists usually grow and/or shrink as the
program executes.

A fixed-length list has a size that is determined by the problem. A fixed-length list does not
grow or shrink.

A fixed-length list is similar to a structure: it is often used to group things that belong
together.

Tools for fixed-length lists M08 3/64

A number of functions work particularly well with fixed-length lists:

(list x1 ... xn) constructs a list of n items.

(first lst) produces the first item of the non-empty list lst.

(second lst) produces the second item (if it exists; error otherwise).

(third lst) produces the third item (if it exists; error otherwise).

(fourth lst) produces the fourth item (if it exists; error otherwise).

...

(eighth lst) produces the eighth item (if it exists; error otherwise).

To make use of these functions, change DrRacket’s language level to "Beginning Student
with List Abbreviations".

List abbreviations M08 4/64

The expression

(list exp1 exp2 ... expn)

produces the same result as (is equivalent to)

(cons exp1 (cons exp2 (... (cons expn empty)...)))

Note that empty is included explicitly when using cons but not when using list. It’s still
present in the list that list produces but empty is not one of the arguments.

E
x.

1

You want to add one more element to the list lst. Do you use (cons elem lst) or
(list elem lst)? What’s the difference between them?

Why is (list 1 2) legal but (cons 1 2) is not?

What’s the difference between (cons 1 empty) and (list 1 empty)?

Fixed-length lists in contracts M08 5/64

An unbounded list’s type is (listof X).

A fixed-length list’s type is (list T1 ... Tn) where T1 to Tn are the types of each of the n

elements in the list.

Examples:

(list Str Num) – could be used for an employee’s name and their salary

(listof (list Str Num)) – an arbitrarily long list of two-element lists; it could be used
to store the names and salaries of all the employees of a company.

As with other types, we can give meaningful names:

A SalaryRec is a (list Str Num).

A Payroll is a (listof SalaryRec).

Alternatively, A Payroll is a (listof (list Str Num)).

Example: a payroll M08 6/64

A company’s payroll is a list of employee names and their
salaries.

The payroll is an unbounded list (it grows and shrinks with the
workforce) of fixed-length lists (the data kept for each
employee is always the same – name and salary).

Example payroll:
(cons (list "Asha" 7000)

(cons (list "Joseph" 100000)
(cons (list "Sami" 50000) empty)))

We have two different ways to visualize this list of lists.

Asha 7000

Joseph 100000

Sami 50000

Asha 7000 Joseph 100000 Sami 50000

Example: processing a payroll M08 7/64

Write compute-taxes, a function which consumes a payroll (a
list of employee names and their salaries) and produces a list
of each employee name and the tax owed. The tax owed is
computed with tax-payable from Module 04.

(check-expect (compute-taxes
(cons (list "Asha" 7000)

(cons (list "Joseph" 100000)
(cons (list "Sami" 50000)

empty))))

(cons (list "Asha" 700)
(cons (list "Joseph" 16500)

(cons (list "Sami" 5500)
empty))))

Asha 7000

Joseph 100000

Sami 50000

> Data definitions M08 8/64

;; A Payroll is one of:
;; * empty
;; * (cons (list Str Num) Payroll)

Note the use of (list Str Num) for the fixed-length list but cons for the payroll itself (which is
unbounded).

This data definition is equivalent to (listof X) where X is (list Str Num). We use the
expanded form because it makes template development easier.

> Template M08 9/64

;; (payroll-template pr)
;; payroll-template: Payroll → Any
(define (payroll-template pr)
(cond [(empty? pr) ...]

[(cons? pr) (... (first pr)
(payroll-template (rest pr)))]))

A payroll is just a list, so this looks exactly like the (listof X) template – so far...

> Template M08 10/64

;; (payroll-template pr)
;; payroll-template: Payroll → Any
(define (payroll-template pr)
(cond [(empty? pr) ...]

[(cons? pr) (... (first (first pr))
(second (first pr))
(payroll-template (rest pr)))]))

Some short helper functions will make our code more readable.

> Template M08 11/64

;; (name lst) produces the first item from lst -- the name.
;; name: (list Str Num) → Str
(define (name lst) (first lst))
;; (salary lst) produces the second item from lst -- the salary.
;; salary: (list Str Num) → Num
(define (salary lst) (second lst))

;; (payroll-template pr)
;; payroll-template: Payroll → Any
(define (payroll-template pr)
(cond [(empty? pr) ...]

[(cons? pr) (... (name (first pr))
(salary (first pr))
(payroll-template (rest pr)))]))

> Start design recipe; fill in template M08 12/64

;; (compute-taxes payroll) calculates the tax owed for each
;; employee/salary pair in the payroll.
;; Examples:
(check-expect (compute-taxes empty) empty)
(check-expect (compute-taxes (cons (list "Asha" 7000) empty))

(cons (list "Asha" 700) empty))
(check-expect (compute-taxes test-payroll) test-taxes)

;; compute-taxes: Payroll → (listof (list Str Num))
(define (compute-taxes payroll)
(cond [(empty? payroll) ...]

[(cons? payroll) (... (name (first payroll))
(salary (first payroll))
(compute-taxes (rest payroll)))]))

> Finish compute-taxes M08 13/64

;; (compute-taxes payroll) calculates the tax owed for each
;; employee/salary pair in the payroll.
;; Examples:
(check-expect (compute-taxes empty) empty)
(check-expect (compute-taxes (cons (list "Asha" 7000) empty))

(cons (list "Asha" 700) empty))
(check-expect (compute-taxes test-payroll) test-taxes)

;; compute-taxes: Payroll → TaxRoll
(define (compute-taxes payroll)
(cond [(empty? payroll) empty]

[(cons? payroll)
(cons (list (name (first payroll))

(tax-payable (salary (first payroll))))
(compute-taxes (rest payroll)))]))

» Alternate solution M08 14/64

(define (compute-taxes-alt payroll)
(cond [(empty? payroll) empty]

[(cons? payroll) (cons (sr->tr (first payroll))
(compute-taxes-alt (rest payroll)))]))

;; (sr->tr salary-rec) consumes a salary record and produces the
;; corresponding tax record
;; sr->tr: (list Str Num) → (list Str Num)
(define (sr->tr salary-rec)
(list (name salary-rec) (tax-payable (salary salary-rec))))

> Alternate templates leading to the second solution M08 15/64

;; A SalaryRec is a (list Str Num).
;; A Payroll is one of:
;; * empty
;; * (cons SalaryRec Payroll)

(define (salary-rec-template sr) (... (name sr)
(salary sr)))

;; (payroll-template pr)
;; payroll-template: Payroll → Any
(define (payroll-template pr)
(cond [(empty? pr) ...]

[(cons? pr) (... (salary-rec-template (first pr))
(payroll-template (rest pr)))]))

Different kinds of lists M08 16/64

When we introduced lists in module 06, the items they
contained were not lists. These were flat lists.

DaCapobicycle DaCapo play-
dohcomics

We have just seen lists of lists. A Payroll is a list con-
taining two-element flat lists. In later lecture modules,
we will use lists containing unbounded flat lists.

Asha 7000

Joseph 100000

Sami 50000

We will also see nested lists, in which lists may contain
lists that contain lists, and so on to an arbitrary depth.

C

A B
I J

D E F G H

cons vs. list M08 17/64

cons

Consumes exactly two arguments: an
Any and a list, which may be empty.

Used to add one more item to the front
of a list of arbitrary size; the length is
often known only when the program is
running.

Lists constructed with cons will
explicitly show empty at the end of the
list.

list

Consumes any number of arguments
and creates a list exactly that length.

Used to construct a list that has fixed
size; the length is known when we
write the program.

Lists constructed with list will not
explicitly show empty at the end
(although it may contain empty as an
element).

list is very useful for creating test data, even for functions that consume an unbounded list.
Example: (check-expect (sort (list 3 1 4 2)) (list 1 2 3 4))

Except for creating tests, data, and other lists of known length, you should almost always
use cons instead of list.

E
x.

2
What is the length of gear?

(define gear (list (list "hat" "boots") "coat"
(list 32.3 (list "mitts")) empty "scarf"))

Determine the answer by hand, then use the length function to check your answer.

E
x.

3 Write an expression, e, using cons but not list so that (check-expect? gear e)

passes.

Dictionaries M08 18/64

Once upon a time, a dictionary was a book in which you look up a word to find a definition.
Nowdays, a dictionary is an app or a website:

But in all cases there is a correspondence between a word and its definition.

> Example dictionaries M08 19/64

More generally, a dictionary contains a number of unique keys, each with an associated
value.

Examples:

A book of word definitions: keys are words; values are definitions.

Your contacts list: keys are names; values are telephone numbers, twitter handle, email
address, etc.

Course marks: keys are student numbers; values are marks.

Stocks: keys are symbols; values are prices.

Many two-column tables can be viewed as dictionaries. The previous examples can all be
viewed as two-column tables.

Payroll was a dictionary.

> Dictionary operations M08 20/64

What operations might we wish to perform on dictionaries?

lookup: given a key, produce the corresponding value

add: add a (key,value) pair to the dictionary

remove: given a key, remove it and its associated value

> Association lists M08 21/64

One simple dictionary implementation uses
an association list, which is just a list of (key,
value) pairs.

We store each pair as a two-element list.

For simplicity, we will use natural numbers as
keys and strings as values.

;; An association list (AL) is one of:
;; ⋆ empty
;; ⋆ (cons (list Nat Str) AL)
;; Requires: each key (Nat) is unique

Example:

(define hurricane-damage
(list (list 1 "Minimal")

(list 2 "Moderate")
(list 3 "Extensive")
(list 4 "Extreme")
(list 5 "Catastrophic")))

5 Catastrophic

1 Minimal

2 Moderate

3 Extensive

4 Extreme

> Association lists M08 22/64

We can create association lists based on other types for keys and values. We use Nat and
Str here just to provide a concrete example.

Since we have a data definition, we could use AL for the type of an association list, as given
in a contract.

Another name for the same type is (listof (list Nat Str)), still with
;; Requires: each key (Nat) is unique.

Once we have considered the template, we will write functions implementing the dictionary
operations on association lists: lookup-al, add-al, and remove-al.

> Constructing the al-template M08 23/64

We can use the data definition to produce a template.
;; al-template: AL → Any
(define (al-template alst)
(cond [(empty? alst) ...]

[else (... (first (first alst)) ; first key
(second (first alst)) ; first value
(al-template (rest alst)))]))

A better implementation (except for the lack of documentation):

(define (key kv) (first kv))
(define (val kv) (second kv))

(define (al-template alst)
(cond [(empty? alst) ...]

[else (... (key (first alst))
(val (first alst))
(al-template (rest alst)))]))

> Lookup operation M08 24/64

Recall that lookup consumes a key and a dictionary (association list) and produces the
corresponding value when it’s found. But what should lookup-al produce if it fails?

For now, we’ll just produce an empty string – "". We’ll come up with a better solution soon.

(define hurricane-damage
(list (list 1 "Minimal")

(list 2 "Moderate")
(list 3 "Extensive")
(list 4 "Extreme")
(list 5 "Catastrophic")))

(check-expect (lookup-al-v1 2 hurricane-damage) "Moderate")
(check-expect (lookup-al-v1 8 hurricane-damage) "")

> lookup implementation M08 25/64

(define (key kv) (first kv))
(define (val kv) (second kv))

(define (al-template alst)
(cond [(empty? alst) ...]

[else (... (key (first alst))
(val (first alst))
(al-template (rest alst)))]))

;; (lookup-al k alst) produces the value corresponding
;; to key k, or "" if k not present.
;; lookup-al: AL -> Str
(define (lookup-al-v1 k alst)
(cond [(empty? alst) ""]

[(= k (key (first alst))) (val (first alst))]
[else (lookup-al-v1 k (rest alst))]))

> lookup improvements M08 26/64

But what if we wanted to add a "category 0" hurricane with no damage?

(define hurricane-damage
(list (list 0 "")

(list 1 "Minimal")
(list 2 "Moderate")
(list 3 "Extensive")
(list 4 "Extreme")
(list 5 "Catastrophic")))

lookup-al returns "" for both category 0 and a key that’s not found!

> lookup improvements M08 27/64

;; (lookup-al-v2 k alst) produces the value corresponding
;; to key k, or false if k not present.
;; Examples:
(check-expect (lookup-al-v2 2 hurricane-damage) "Moderate")
(check-expect (lookup-al-v2 0 hurricane-damage) "")
(check-expect (lookup-al-v2 8 hurricane-damage) false)

;; lookup-al-v2: AL -> ???
(define (lookup-al-v2 k alst)
(cond [(empty? alst) false]

[(= k (key (first alst))) (val (first alst))]
[else (lookup-al-v2 k (rest alst))]))

But what’s the type for the contract?

> (anyof ...) notation in contracts M08 28/64

Use (anyof X Y ...) to mean any of the listed types or values.

Examples:

(anyof Num Str)

(anyof Str Num Bool)

(anyof 1 2 3)

(listof (anyof Str false))

;; foo: Num → (anyof Str Bool Num)
(define (foo x)

(cond [(< x 0) "negative"]
[(= x 0) false]
[(= x 1) true]
[else x]))

We can now explain the type Any more precisely: it is an abbreviation for
(anyof Nat Int Num Sym Bool Str ...) where ... is every other type in your program.

Dictionaries: summary M08 29/64

We will leave the add-al and remove-al functions as exercises.

The association list solution is simple enough that it is often used for small dictionaries.

For a large dictionary, association lists are inefficient. For example, consider the case where
the key is not present and the whole list must be searched.

In a future module, we will impose structure to improve this situation.

E
x.

4

Write add-al to implement the add operation. For example:

;; (add-al assoc alst) adds assoc to alst. If alst already contains assoc's

;; Closed-box tests:
(check-expect (add-al (list 8 "Asha") empty) (list (list 8 "Asha")))

(check-expect ; alst does not contain this key.
(add-al (list 7 "Bo")

(list (list 8 "Asha") (list 2 "Joseph") (list 5 "Sami")))

E
x.

5

Write remove-al to implement the remove operation. For example:

;; Closed-box tests:

E
x.

6

Think about maintaining the association list in sorted order.

How would you modify lookup-al to avoid searching the whole list most of the
time?

How would you modify insert-al? Does it do more “work” or less “work” than
inserting into an unordered list?

Two-dimensional data M08 30/64

Another use of lists of (fixed-length) lists is to represent a two-dimensional table.

For example, here is a multiplication table:

(mult-table 3 4) ⇒
(list (list 0 0 0 0)

(list 0 1 2 3)
(list 0 2 4 6))

The cth entry of the r th row (numbering from 0) is r × c.

We can write mult-table using two applications of the “count up” idea.

0 0 0 0

0 1 2 3

0 2 4 6

> Make one row M08 31/64

Make one row of the table but counting the columns from 0 up to nc, doing the required
multiplication for each one.

This will be a helper function in the final solution.

;; (make-a-row c r nc) produces entries c...(nc-1) of rth row of mult. table
;; Examples:
(check-expect (make-a-row 0 3 5) (list 0 3 6 9 12))
(check-expect (make-a-row 0 4 5) (list 0 4 8 12 16))

;; make-a-row: Nat Nat Nat → (listof Nat)
(define (make-a-row c r nc)
(cond [(>= c nc) empty]

[else (cons (* r c) (make-a-row (add1 c) r nc))]))

> Put multiple rows together M08 32/64

;; (mult-table nr nc) produces multiplication table
;; with nr rows and nc columns
;; Example:
(check-expect (mult-table 3 4)

(list (list 0 0 0 0)
(list 0 1 2 3)
(list 0 2 4 6)))

;; mult-table: Nat Nat → (listof (listof Nat))
(define (mult-table nr nc)
(generate-rows 0 nr nc))

;; (generate-rows r nr nc) produces mult. table, rows r...(nr-1)
;; rows-to: Nat Nat Nat → (listof (listof Nat))
(define (generate-rows r nr nc)
(cond [(>= r nr) empty]

[else (cons (make-a-row 0 r nc) (generate-rows (add1 r) nr nc))]))

Processing two lists simultaneously M08 33/64

We now look at a more complicated recursion, namely writing functions which consume two
lists (or two data types, each of which has a recursive definition).

We will distinguish four different cases, and look at them in order of complexity.

The simplest case is when one of the lists does not require recursive processing.

> Case 1: processing just one list M08 34/64

As an example, consider the function my-append.

;; (my-append lst1 lst2) adds each element of lst1 to the
;; beginning of lst2, preserving order
;; Examples:
(check-expect (my-append empty (list 1 2))

(list 1 2))
(check-expect (my-append (list 3 4) (list 1 2 5))

(list 3 4 1 2 5))

;; my-append: (listof Any) (listof Any) → (listof Any)
(define (my-append lst1 lst2)

» my-append M08 35/64

(define (my-append lst1 lst2)
(cond [(empty? lst1) lst2]

[else (cons (first lst1)
(my-append (rest lst1) lst2))]))

The code only does simple recursion on lst1.

The parameter lst2 is “along for the ride”.

append is a built-in function in Racket.

» A condensed trace M08 36/64

(my-append (list 1 2 3) (list 4 5 6))
⇒ (cons 1 (my-append (list 2 3) (list 4 5 6)))
⇒ (cons 1 (cons 2 (my-append (list 3) (list 4 5 6))))
⇒ (cons 1 (cons 2 (cons 3 (my-append (list) (list 4 5 6)))))
⇒ (cons 1 (cons 2 (cons 3 (list 4 5 6)))

The last line is the same as
(cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 empty)))))).
That’s the same as (list 1 2 3 4 5 6).

cons vs. list vs. append M08 37/64

cons, list, and append are all different and have different uses, but are often confused.

(cons v lst) is used to make lst one element longer by adding the value v at the
beginning of the list.
The length of the result will be (add1 (length lst)).

(list v_1 v_2 ... v_n) is used to construct a list with the n values given.
The length of the result will be n.

(append lst1 lst2) appends lst2 to the end of lst1.
The length of the result will be (+ (length lst1) (length lst2)).

In each case, the values and lists involved might be the result of evaluating an expression.

E
x.

7

Write a function expand-each that consumes two lists. For each item in the first list,
make a list that contains that item, followed by all the items in the second list.

(check-expect (expand-each (list 12 13 'x)
(list 42 "zorkmids" 'Q))

(list (list 12 42 "zorkmids" 'Q)
(list 13 42 "zorkmids" 'Q)
(list 'x 42 "zorkmids" 'Q)))

Remember: the second list is “along for the ride”; it does not change.

> Case 2: processing in lockstep; equal length lists M08 38/64

To process two lists lst1 and lst2 in lockstep, they must be the same length and be
consumed at the same rate.

lst1 is either empty or a cons, and the same is true of lst2 (four possibilities in total).

However, because the two lists must be the same length,
(empty? lst1) is true if and only if (empty? lst2) is true.

This means that out of the four possibilities, two are invalid
for proper data.

The template is thus simpler than in the general case.

» Lockstep template M08 39/64

;; lockstep-template: (listof X) (listof Y) → Any
;; Requires: (length lst1) = (length lst2)
(define (lockstep-template lst1 lst2)
(cond [(empty? lst1) ...]

[else
(... (first lst1) (first lst2)

(lockstep-template (rest lst1) (rest lst2)))]))

» Example: dot product M08 40/64

To take the dot product of two vectors, we multiply entries in corresponding positions (first
with first, second with second, and so on) and sum the results.

Example: the dot product of (1 2 3) and (4 5 6) is 1 · 4 + 2 · 5 + 3 · 6 = 4 + 10 + 18 = 32.

We can store the elements of a vector in a list, so (1 2 3) becomes (list 1 2 3).

For convenience, we define the empty vector with no entries, represented by empty.

» dot-product M08 41/64

;; (dot-product lon1 lon2) computes the dot product
;; of vectors lon1 and lon2
;; Examples:
(check-expect (dot-product empty empty) 0)
(check-expect (dot-product (list 2) (list 3)) 6)
(check-expect (dot-product (list 2 3 4 5) (list 6 7 8 9))

(+ 12 21 32 45))

;; dot-product: (listof Num) (listof Num) → Num
;; Requires: lon1 and lon2 are the same length
(define (dot-product lon1 lon2)

» dot-product M08 42/64

;; (dot-product lon1 lon2) computes the dot product
;; of vectors lon1 and lon2
;; Examples:
(check-expect (dot-product empty empty) 0)
(check-expect (dot-product (list 2) (list 3)) 6)
(check-expect (dot-product (list 2 3 4 5) (list 6 7 8 9))

(+ 12 21 32 45))

;; dot-product: (listof Num) (listof Num) → Num
;; Requires: lon1 and lon2 are the same length
(define (dot-product lon1 lon2)
(cond
[(empty? lon1) 0]
[else (+ (* (first lon1) (first lon2))

(dot-product (rest lon1) (rest lon2)))]))

» A condensed trace M08 43/64

(dot-product (list 2 3 4)
(list 5 6 7))

⇒ (+ 10 (dot-product (list 3 4)
(list 6 7)))

⇒ (+ 10 (+ 18 (dot-product (list 4)
(list 7))))

⇒ (+ 10 (+ 18 (+ 28 (dot-product (list)
(list)))))

⇒ (+ 10 (+ 18 (+ 28 0)))
⇒ (+ 10 (+ 18 28))
⇒ (+ 10 46)
⇒ 56

E
x.

8 Write a recursive function vector-add that adds two vectors.
(vector-add (list 3 5) (list 7 11)) ⇒ (list 10 16)

(vector-add (list 3 5 1 3) (list 2 2 9 3)) ⇒ (list 5 7 10 6)

E
x.

9

Complete join-names.

(define gnames (list "Joseph" "Burt" "Douglas" "James" "David"))
(define snames (list "Hagey" "Matthews" "Wright" "Downey" "Johnston"))

;; (join-names g s) Make a list of full names from g (given names) and
;; s (surnames).

;; Closed-box tests:
(check-expect (join-names gnames snames)

(list "Joseph Hagey" "Burt Matthews" "Douglas Wright"
"James Downey" "David Johnston"))

Case 3: lockstep but (possibly) different lengths M08 44/64

(nlist=? lon1 lon2) produces true if the number in each position of lon1 is equal to the
number in the corresponding position in lon2.

;; (nlist=? lon1 lon2) determines if lon1 and lon2 are equal
;; Examples:
(check-expect (nlist=? empty empty) true)
(check-expect (nlist=? (list 1 2 3) (list 1 2 3)) true)
(check-expect (nlist=? (list 1 2 3) (list 1 2 4)) false)
(check-expect (nlist=? (list 1 2 3) (list 1 2 3 4)) false)

;; nlist=?: (listof Num) (listof Num) → Bool
(define (nlist=? lon1 lon2)
(cond
[(and (empty? lon1) (empty? lon2)) ...]
[(and (empty? lon1) (cons? lon2)) ...]
[(and (cons? lon1) (empty? lon2)) ...]
[(and (cons? lon1) (cons? lon2)) ...]))

> Reasoning about list equality M08 45/64

Two empty lists are equal; if one is empty and the other is not, they are not equal.

;; (nlist=? lon1 lon2) determines if lon1 and lon2 are equal
;; nlist=?: (listof Num) (listof Num) → Bool
(define (nlist=? lon1 lon2)
(cond
[(and (empty? lon1) (empty? lon2)) true]
[(and (empty? lon1) (cons? lon2)) false]
[(and (cons? lon1) (empty? lon2)) false]
[(and (cons? lon1) (cons? lon2)) ...]))

If both are nonempty, then their first elements must be equal, and their rests must be equal.

The natural recursion in this case is

(... (first lon1) (first lon2) (nlist=? (rest lon1) (rest lon2)))

List equality code M08 46/64

;; (nnlist=? lon1 lon2) determines if lon1 and lon2 are equal
;; Examples:
(check-expect (nlist=? (list 1 3 5) (list 1 3)) false)
(check-expect (nlist=? (list 1 3 5) (list 1 4 5)) false)
(check-expect (nlist=? (list 1 3) (list 1 3 5)) false)
(check-expect (nlist=? (list 1 3 5) (list 1 3 5)) true)

;; nlist=?: (listof Num) (listof Num) → Boolean
(define (nlist=? lon1 lon2)
(cond
[(and (empty? lon1) (empty? lon2)) true]
[(and (empty? lon1) (cons? lon2)) false]
[(and (cons? lon1) (empty? lon2)) false]
[(and (cons? lon1) (cons? lon2))
(and (= (first lon1) (first lon2))

(nlist=? (rest lon1) (rest lon2)))]))

E
x.

10

The code for nlist=? can be transformed in various ways. Each problem stands alone,
starting with the code on the previous slide. Whether the result is “better” or not
depends on the metrics used.
Modify the implementation of nlist=? in the following ways:

1 Combine the second and third question/answer pairs.

2 Combine the first and second question/answer pairs; simplify the third.

3 Use else.

4 Combine 1 and 3.

5 Combine 2 and 3.

6 Get rid of the cond completely.

E
x.

11
Our “basic types” so far are Num, Str, Bool, and Sym. Let’s give these a name:
;; an Atom is (anyof Num Str Bool Sym)

Write a (non-recursive) function atom=? that determines if two Atom are equal.

Expand your nlist=? function so it works on two (listof Atom).

You may use boolean=? for this question, but in general, avoid it. We’re not adding it to
our toolbox.

E
x.

12

If you want a significantly greater challenge:
;; a PrettyMuchAny is a (anyof Atom (listof PrettyMuchAny))

Expand your nlist=? function so it works on (listof PrettyMuchAny).

> Built-in list equality M08 47/64

Racket provides the predicate equal? which tests structural equivalence. It can compare two
simple values (numbers, strings, symbols, etc), or two lists or structures containing any
mixture of simple values and other lists and structures.

(equal? (list 1 (list 2 3)) (list 1 (list 2 3))) ⇒ true
(equal? 'a 'b) ⇒ false ;; Bad style! Use symbol=?
(equal? (list "one" 'two 3) (list 1 2 3)) ⇒ false
(equal? (make-point 3 4) (make-point 3 4)) ⇒ true
(equal? (make-point 3 4) (make-circle 3 4)) ⇒ false

How would you write equal? if it were not already built in?

!
WARNING: Do not over-use equal?.
If there is a type-specific predicate that works, use it.

> Case 4: processing at different rates M08 48/64

If the two lists being consumed are of different lengths, all four possibilities for their being
empty/nonempty are possible and need to be checked in the template:

(define (twolist-template lon1 lon2)
(cond [(and (empty? lon1) (empty? lon2)) ...]

[(and (empty? lon1) (cons? lon2)) ...]
[(and (cons? lon1) (empty? lon2)) ...]
[(and (cons? lon1) (cons? lon2)) ...]))

The first possibility is a base case; the second and third may or may not be.

» Refining the template M08 49/64

(define (twolist-template lon1 lon2)
(cond
[(and (empty? lon1) (empty? lon2)) ...]
[(and (empty? lon1) (cons? lon2)) (... (first lon2) (rest lon2))]
[(and (cons? lon1) (empty? lon2)) (... (first lon1) (rest lon1))]
[(and (cons? lon1) (cons? lon2)) ???]))

The second and third possibilities may or may not require recursion.

The fourth possibility definitely requires recursion, but its form is unclear.

» Further refinements M08 50/64

There are several possible natural recursions for the last cond answer ???:

(... (first lon1)
(twolist-template (rest lon1) lon2))

(... (first lon2)
(twolist-template lon1 (rest lon2)))

(... (first lon1) (first lon2)
(twolist-template (rest lon1) (rest lon2)))

Which of these is appropriate depends on the specific problem we’re trying to solve and will
require further reasoning.

» Example: merging two sorted lists M08 51/64

We wish to design a function merge that consumes two lists of numbers.

Each list is sorted in ascending order (no duplicate values).

merge will produce one list containing all elements, also in ascending order.

As an example:

(merge (list 1 8 10) (list 2 4 6 12)) ⇒ (list 1 2 4 6 8 10 12)

The effect of (merge lst1 lst2) is the same as (sort (append lst1 lst2)) but will take
advantage of lst1 and lst2 already being sorted.

We need more examples to be confident of how to proceed.

» Example: merging two sorted lists M08 52/64

;; Base cases:
(check-expect (merge empty empty) empty)
(check-expect (merge empty (list 2 6 9)) (list 2 6 9))
(check-expect (merge (list 1 3) empty) (list 1 3))

;; Recursive cases:
(check-expect (merge (list 1 4) (list 2)) (list 1 2 4))
(check-expect (merge (list 3 4) (list 2)) (list 2 3 4))

E
x.

13 Before you proceed, try to write your own merge function.

» Reasoning about merge M08 53/64

If lon1 and lon2 are both nonempty, what is the first element of the merged list?

It is the smaller of (first lon1) and (first lon2).

If (first lon1) is smaller, then the rest of the answer is the result of merging (rest lon1)

and lon2.

If (first lon2) is smaller, then the rest of the answer is the result of merging lon1 and
(rest lon2).

» Merge code M08 54/64

;; merge: (listof Num) (listof Num) → (listof Num)
;; Requires: lon1 and lon2 are already in ascending order.
(define (merge lon1 lon2)
(cond [(and (empty? lon1) (empty? lon2)) empty]

[(and (empty? lon1) (cons? lon2)) lon2]
[(and (cons? lon1) (empty? lon2)) lon1]
[(and (cons? lon1) (cons? lon2))
(cond [(< (first lon1) (first lon2))

(cons (first lon1) (merge (rest lon1) lon2))]
[else (cons (first lon2) (merge lon1 (rest lon2)))])]))

» A condensed trace M08 55/64

(merge (list 3 4)
(list 2 5 6))

⇒ (cons 2 (merge (list 3 4)
(list 5 6))))

⇒ (cons 2 (cons 3 (merge (list 4)
(list 5 6))))

⇒ (cons 2 (cons 3 (cons 4 (merge empty
(list 5 6)))))

⇒ (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 empty)))))

Mergesort M08 56/64

The merge algorithm is the core of mergesort, a sorting algorithm invented by John von
Neumann in 1945. mergesort is more complicated than insertion sort but on longer lists it is
much faster.

;; (mergesort lon) puts lon in increasing order
;; mergesort: (listof Num) → (listof Num)
(define (mergesort lon)
(cond [(empty? lon) empty]

[(empty? (rest lon)) lon]
[else (merge (mergesort (one-half lon))

(mergesort (other-half lon)))]))

one-half and other-half each produce half of the provided list. Perhaps one produces the
first half and the other the last half, or one produces the items at even-numbered positions
and the other produces items at odd-numbered positions, or

Consuming a list and a number M08 57/64

We defined recursion on natural numbers by showing how to view a natural number in a
list-like fashion.

We can extend our idea for computing on two lists to computing on a list and a number, or
on two numbers.

Write a predicate “Does elem appear at least n times in this list?”

Example: “Does 2 appear at least 3 times in the list (list 4 2 2 3 2 4)?” produces true.

> Examples for at-least? M08 58/64

;; (at-least? n elem lst) determines if elem appears
;; at least n times in lst.
;; Examples:
(check-expect (at-least? 0 'red (list 1 2 3)) true)
(check-expect (at-least? 3 "hi" empty) false)
(check-expect (at-least? 2 'red (list 'red 'blue 'red 'green)) true)
(check-expect (at-least? 3 'red (list 'red 'blue 'red 'green)) false)
(check-expect (at-least? 1 7 (list 5 4 0 5 3)) false)

;; at-least?: Nat Any (listof Any) → Bool
(define (at-least? n elem lst)

> Developing the code M08 59/64

The recursion involves the parameters n and lst, once again giving four possibilities:

(define (at-least? n elem lst)
(cond [(and (zero? n) (empty? lst)) ...]

[(and (zero? n) (cons? lst)) ...]
[(and (> n 0) (empty? lst)) ...]
[(and (> n 0) (cons? lst)) ...]))

Once again, exactly one of these four possibilities is true.

In which cases can we produce the answer without further processing?
In which cases do we need further recursive processing to discover the answer?
Which of the natural recursions should be used?

> Improving at-least? M08 60/64

In working out the details for each case, it becomes apparent that some of them can be
combined.

If n is zero, it doesn’t matter whether lst is empty or not. Logically, every element always
appears at least 0 times.

This leads to some rearrangement of the code, and eventually to the code that appears on
the next slide.

> Improved at-least? M08 61/64

(define (at-least? n elem lst)
(cond [(zero? n) true]

[(empty? lst) false]
; list is nonempty, n ≥ 1
[(equal? (first lst) elem) (at-least? (sub1 n) elem (rest lst))]
[else (at-least? n elem (rest lst))]))

> Two condensed traces M08 62/64

(at-least? 3 'green (list 'red 'green 'blue)) ⇒
(at-least? 3 'green (list 'green 'blue)) ⇒
(at-least? 2 'green (list 'blue)) ⇒
(at-least? 2 'green empty) ⇒ false

(at-least? 1 8 (list 4 8 15 16 23 42)) ⇒
(at-least? 1 8 (list 8 15 16 23 42)) ⇒
(at-least? 0 8 (list 15 16 23 42)) ⇒ true

Goals of this module M08 63/64

You should be able to work with fixed-length lists, including lists of fixed-length lists
such as dictionaries.

You should know the differences between cons, list, and append, and know the
circumstances where each is appropriate.

You should be able to construct and work with lists that contain lists.

You should understand the four approaches to designing functions that consume two
lists (or a list and a number, or two numbers) and know which one is suitable in a given
situation.

Summary: built-in functions M08 64/64

The following functions and special forms have been introduced in this module:

append eighth equal? fifth fourth list second seventh sixth third

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - ... / < <= = > >= abs add1 and append boolean? ceiling char-alphabetic?

char-downcase char-lower-case? char-numeric? char-upcase char-upper-case?
char-whitespace? char<=? char<? char=? char>=? char>? char? check-error check-expect
check-within cond cons cons? cos define define-struct define/trace e eighth else
empty? equal? error even? exp expt fifth first floor fourth integer? length list
list->string list? log max min modulo negative? not number->string number? odd? or pi
positive? quotient remainder rest round second seventh sgn sin sixth sqr sqrt
string->list string-append string-downcase string-length string-lower-case?
string-numeric? string-upcase string-upper-case? string<=? string<? string=? string>=?
string>? string? sub1 substring symbol=? symbol? tan third zero?

