
07: Natural Numbers

Review: from definition to template M07 2/27

We’ll review how we derived the list template.

;; A (listof X) is one of:
;; ⋆ empty
;; ⋆ (cons X (listof X))

Suppose we have a list, lst.

The test (empty? lst) tells us which case applies.
If (empty? lst) is false, then lst is of the form (cons f r).

f is (first lst).
r is (rest lst).

Because r is a list, we recursively apply the function we are constructing to it.

listof-X-template M07 3/27

;; listof-X-template: (listof X) → Any
(define (listof-X-template lst)
(cond [(empty? lst) ...]

[else (... (first lst)
(listof-X-template (rest lst)))]))

We can repeat this reasoning on a recursive definition of natural numbers to obtain a
template.



A Formal Definition of Natural Numbers (1/3) M07 4/27

Logicians use the Peano axioms to define the natural numbers. These include:

0 is a natural number.

For every natural number n, S(n) is a natural number.

1 can be represented as S(0), 2 as S(S(0)), 3 as S(S(S(0))), and so on.

S(n) is called the successor function; it consumes a natural number, and returns the next.

(A handful of other axioms define the rest of the behaviour of natural numbers, but we don’t
need to go into them here.)

A Formal Definition of Natural Numbers (2/3) M07 5/27

The successor function S(n) produces the “next” natural number. We will use the Racket
function add1 as the successor function:

(add1 0) ⇒ 1
(add1 1) ⇒ 2
(add1 2) ⇒ 3

With this function, we can translate the logicians’ axioms into a Racket data definition:

0 is a natural number.

For every natural number n,
S(n) is a natural number.

−→
;; A Nat is one of:
;; 0
;; (add1 Nat)

A Formal Definition of Natural Numbers (3/3) M07 6/27

;; A Nat is one of:
;; ⋆ 0
;; ⋆ (add1 Nat)

The natural numbers start at 0 in computer science and some branches of mathematics
(e.g., logic).

We’ll now work out a template for functions that consume a natural number.



Developing nat-template M07 7/27

Suppose we have a natural number, n. Then it must conform to our data definition:

;; A Nat is one of:
;; * 0
;; * (add1 Nat)

The test (zero? n) tells us which of these cases applies, yielding:

;; nat-template: Nat -> Any
(define (nat-template n)
(cond [(zero? n) ...] ;; n is 0

[else ...])) ;; n is (add1 k), for some k

We can compute k with (- n 1) or (sub1 n).

Because k is a natural number, we recursively apply the function we are constructing to it.

;; nat-template: Nat -> Any
(define (nat-template n)
(cond [(zero? n) ...]

[else (... n
(nat-template (sub1 n)))]))

> Example: a decreasing list M07 9/27

Goal: countdown, which consumes a natural number n and produces a decreasing list of all
natural numbers less than or equal to n.

(countdown 0) ⇒ (cons 0 empty)

(countdown 1) ⇒ (cons 1 (cons 0 empty))

(countdown 2) ⇒ (cons 2 (cons 1 (cons 0 empty)))

With these examples, we proceed by filling in the template.

0

11 0

22 1 01



> countdown M07 10/27

;; (countdown n) produces a decreasing list of Nats from n to 0
(check-expect (countdown 0) (cons 0 empty))
(check-expect (countdown 2) (cons 2 (cons 1 (cons 0 empty))))

;; countdown: Nat → (listof Nat)
(define (countdown n)
(cond [(zero? n) ...]

[else (... n
(countdown (sub1 n)))]))

Useful questions:

1 What do we produce in the base case?

2 In the recursive case, what (if anything) do we do to transform n?

3 What is the result of processing (f (sub1 n)) recursively?

4 How do we combine steps 2 and 3 to obtain the result for (f n)?

> countdown M07 11/27

;; (countdown n) produces a decreasing list of Nats from n to 0
;; Examples:
(check-expect (countdown 0) (cons 0 empty))
(check-expect (countdown 2) (cons 2 (cons 1 (cons 0 empty))))

;; countdown: Nat → (listof Nat)
(define (countdown n)
(cond [(zero? n) (cons 0 empty)]

[else (cons n (countdown (sub1 n)))]))

(countdown 2)
⇒ (cons 2 (countdown 1))
⇒ (cons 2 (cons 1 (countdown 0)))
⇒ (cons 2 (cons 1 (cons 0 empty)))

E
x.

1 Write a recursive function (sum-to n) that consumes a Nat and produces the sum of all
Nat between 0 and n.
(sum-to 4) ⇒ (+ 4 (+ 3 (+ 2 (+ 1 0)))) ⇒ 10



Intervals of the natural numbers M07 12/27

The symbol Z is often used to denote the integers.

We can add subscripts to define subsets of the integers (also known as intervals).

For example, Z≥0 defines the non-negative integers, also known as the natural numbers.

Other examples: Z>4, Z<−8, Z≤1.

> Example: Z≥7 M07 13/27

If we change the base case test from (zero? n) to (= n 7), we can stop the countdown at 7.

This corresponds to the following definition:

;; An integer in Z≥7 is one of:
;; ⋆ 7
;; ⋆ (add1 Z≥7)

We use this data definition as a guide when writing functions, but in practice we use a
requires section in the contract to capture the new stopping point.

> countdown-to-7 M07 14/27

;; (countdown-to-7 n) produces a decreasing list from n to 7

Tracing countdown-to-7:

(countdown-to-7 9)
⇒ (cons 9 (countdown-to-7 8))
⇒ (cons 9 (cons 8 (countdown-to-7 7)))
⇒ (cons 9 (cons 8 (cons 7 empty)))



> Generalizing countdown and countdown-to-7 M07 15/27

We can generalize both countdown and countdown-to-7 by providing the base value (e.g., 0
or 7) as a second parameter base.

Here, the stopping condition will depend on base.

The parameter base has to “go along for the ride” (be passed unchanged) in the
recursion.

> countdown-to M07 16/27

;; (countdown-to n base) produces a decreasing list from n to base
;; Examples:
(check-expect (countdown-to 4 2) (cons 4 (cons 3 (cons 2 empty))))
(check-expect (countdown-to 7 7) (cons 7 empty))

;; countdown-to: Int Int → (listof Int)
;; Requires: n >= base
(define (countdown-to n base)
(cond [(= n base) (cons base empty)]

[else (cons n (countdown-to (sub1 n) base))]))

(countdown-to 4 2)
⇒ (cons 4 (countdown-to 3 2))
⇒ (cons 4 (cons 3 (countdown-to 2 2)))
⇒ (cons 4 (cons 3 (cons 2 empty)))

> countdown-to with negative numbers M07 17/27

countdown-to works just fine if we put in negative numbers.

(countdown-to 1 -2)
⇒ (cons 1 (cons 0 (cons -1 (cons -2 empty))))

E
x.

2 Write a recursive function (sum-between n b) than consumes two Nat, with n ≥ b, and
returns the sum of all Nat between b and n.
(sum-between 5 3) ⇒ (+ 5 (+ 4 3)) ⇒ 12



Counting up M07 18/27

What if we want an increasing count?

Consider the non-positive integers Z≤0.

;; A integer in Z≤0 is one of:
;; ⋆ 0
;; ⋆ (sub1 Z≤0)

Examples: −1 is (sub1 0), −2 is (sub1 (sub1 0)).

Since (add1 (sub1 n)) => n for all integers n, the inverse function we need is add1.

This suggests the following template.

> nonpos-template M07 19/27

Notice the additional requires section.

;; nonpos-template: Int → Any
;; Requires: n ≤ 0
(define (nonpos-template n)
(cond [(zero? n) ...]

[else (... n
(nonpos-template (add1 n)))]))

We can use this to develop a function to produce lists such as
(cons -2 (cons -1 (cons 0 empty))).

> countup M07 20/27

;; (countup n) produces an increasing list from n to 0
;; Example:
(check-expect (countup -2) (cons -2 (cons -1 (cons 0 empty))))

;; countup: Int → (listof Int)
;; Requires: n <= 0
(define (countup n)
(cond [(zero? n) (cons 0 empty)]

[else (cons n (countup (add1 n)))]))



> countup-to M07 21/27

As before, we can generalize this to counting up to b, by introducing base as a second
parameter in a template.

;; (countup-to n base) produces an increasing list from n to base
;; Example:
(check-expect (countup-to 6 8) (cons 6 (cons 7 (cons 8 empty))))

;; countup-to: Int Int → (listof Int)
;; Requires: n <= base
(define (countup-to n base)
(cond [(= n base) (cons base empty)]

[else (cons n (countup-to (add1 n) base))]))

Example: power M07 22/27

The countdown/countup pattern is not only applicable to building lists. Consider calculating
ne where e, the exponent, is an integer.

The key insight is that ne = n ∗ ne−1 and that n0 is 1.

(check-expect (power 2 0) 1)
(check-expect (power 2 1) 2)
(check-expect (power 3 3) 27)

;; nat-template: Nat -> Any
(define (nat-template n)
(cond [(zero? n) ...]

[else (... n
(nat-template (sub1 n)))]))

Example: power M07 23/27

With renaming, documentation, and adding parameters:

;; (power n e) computes n^e
;; power: Int Nat -> Int
(define (power n e)
(cond [(zero? e) ...]

[else (... n e
(power n (sub1 e)))]))

;; (power n e) computes n^e
;; power: Int Nat -> Int
(define (power n e)
(cond [(zero? e) 1]

[else (* n (power n (sub1 e)))]))



> Repetition in other languages M07 24/27

Many imperative programming languages offer several language constructs to do repetition:

for i = 1 to 10 do { ... }

Racket offers one construct – recursion – that is flexible enough to handle these situations
and more.

We will soon see how to use Racket’s abstraction capabilities to abbreviate many common
uses of recursion.

> reverse M07 25/27

When you are learning to use recursion, sometimes you will “get it backwards” and use the
countdown pattern when you should be using the countup pattern, or vice-versa.

If you’re building a list and get it backwards, avoid using the built-in list function reverse to
fix your error. It cannot always save a computation done in the wrong order.

Instead, learn to fix your mistake by using the right pattern.

You may not use reverse on assignments unless we say otherwise. You may not implement
your own version, either.

E
x.

3

Write a function (countdown-by top step) that returns a listof Nat so the first is top,
the next is step less, and so on, until the next one would be zero or less.
(countdown-by 12 3) ⇒ (cons 12 (cons 9 (cons 6 (cons 3 empty))))

(countdown-by 11 3) ⇒ (cons 11 (cons 8 (cons 5 (cons 2 empty))))

Consider: how must you change the base case of the template?



E
x.

4

This exercise recurses on a list and a Nat at the same time.
Complete n-th-item.

;; (n-th-item lst n) Produce the n-th item in lst, where (first lst) is
;; the 0th.
;; Example:
(check-expect (n-th-item (cons 3 (cons 7 (cons 31 (cons 63 empty)))) 0) 3)
(check-expect (n-th-item (cons 3 (cons 7 (cons 31 (cons 63 empty)))) 3) 63)

;; n-th-item: (listof Any) Nat → Any
;; Requires: n < (length lst)
(define (n-th-item lst n) ...)

Goals of this module M07 26/27

You should understand the recursive definition of a natural number, and how it leads to
a template for recursive functions that consume natural numbers.

You should understand how subsets of the integers greater than or equal to some
bound m, or less than or equal to such a bound, can be defined recursively, and how
this leads to a template for recursive functions that “count down” or “count up”. You
should be able to write such functions.

Summary: built-in functions M07 27/27

The following functions and special forms have been introduced in this module:

add1 sub1

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - ... / < <= = > >= abs add1 and boolean? ceiling char-alphabetic? char-downcase

char-lower-case? char-numeric? char-upcase char-upper-case? char-whitespace? char<=?
char<? char=? char>=? char>? char? check-error check-expect check-within cond cons
cons? cos define define-struct define/trace e else empty? error even? exp expt first
floor integer? length list->string list? log max min modulo negative? not
number->string number? odd? or pi positive? quotient remainder rest round sgn sin sqr
sqrt string->list string-append string-downcase string-length string-lower-case?
string-numeric? string-upcase string-upper-case? string<=? string<? string=? string>=?
string>? string? sub1 substring symbol=? symbol? tan zero?


