
04: Design Recipe

Programs as communication M04 2/21

Every program is an act of communication:

Between you and the computer

Between you and your future self

Between you and others

By writing code, we communicate with the computer to say exactly what it shall do.

For other programmers we want to communicate other things, such as:

What are we trying to do?

Why are we doing it this way?

We communicate with other programmers (and ourselves) using comments.

The design recipe M04 3/21

The design recipe is an process for developing a function.

The design recipe has three main purposes:

1 Writing it helps you understand the problem. If you cannot write the design recipe,
you probably don’t actually understand the problem.

2 It helps you write understandable code.

3 It helps you write tested code so you have some confidence it does what is should.

You should use the design recipe for every function you write.



Reading the Design Recipe M04 4/21

See the definition of (e10 n). Carefully read the design recipe.

design recipe





;; (e10 n) produce 1 followed by n zeros.

;; Examples:

(check-expect (e10 2) 100)

(check-expect (e10 5) 100000)

(check-expect (e10 0) 1)

;; e10: Nat -> Nat

definition
{
(define (e10 n)

(The function definition is correct, but will not work in the Beginning Student language.
It is intentionally hard to read. Read the design recipe only!)

> The five design recipe components M04 5/21

Purpose: Describes what the function is to compute.

Examples: Illustrating the typical use of the function.

Contract: Describes what type of arguments the function consumes and what type of value
it produces.

Definition: The Racket definition of the function (header & body).

Tests: A representative set of function applications and their expected values. Examples
also serve as Tests.

> Order of execution M04 6/21

The order in which you carry out the steps of the design recipe is very important. Use the
following order:

1 Write a draft of the Purpose

2 Write Examples (by hand, then using check-expect)

3 Write Definition Header & Contract

4 Finalize the purpose with parameter names

5 Write Definition Body

6 Write additional tests, if required



Applying the design recipe M04 7/21

Purpose (first draft):

;; produce the sum of the squares of two numbers

Examples:

32 + 42 = 9 + 16 = 25

;; Examples:
(check-expect (sum-of-squares 3 4) 25)

> Applying the design recipe (cont) M04 8/21

Header & Contract:

;; sum-of-squares: Num Num -> Num
(define (sum-of-squares n1 n2)

Purpose (final draft):

;; (sum-of-squares n1 n2) produces the sum of squares of n1 and n2.

> Applying the design recipe (cont) M04 9/21

Write Function Body:

(define (sum-of-squares n1 n2)
(+ (sqr n1) (sqr n2)))

Write Tests:

;; Tests
(check-expect (sum-of-squares 0 0) 0)
(check-expect (sum-of-squares -2 7) 53)
(check-expect (sum-of-squares 0 2.5) 6.25)



> Applying the design recipe (final result) M04 10/21

;; (sum-of-squares n1 n2) produces the sum of squares of n1 and n2.
;; Examples:
(check-expect (sum-of-squares 3 4) 25)

;; sum-of-squares: Num Num -> Num
(define (sum-of-squares n1 n2)
(+ (sqr n1) (sqr n2)))

;; Tests
(check-expect (sum-of-squares 0 0) 0)
(check-expect (sum-of-squares -2 7) 53)
(check-expect (sum-of-squares 0 2.5) 6.25)

Tests M04 11/21

Tests should be written later than the code body.

Tests can then handle complexities encountered while writing the body.

Tests don’t need to be “big”.
In fact, they should be small and directed.

The number of tests needed is a matter of judgement.

!
Do not attempt to figure out the expected answers to your tests by running your
program! Always work them out independently.

> Testing functions M04 12/21

In addition to check-expect, the teaching languages offer two other testing tools:

(check-expect (sum-of-squares 3 4) 25)
(check-within (sqrt 2) 1.414 .001)
(check-error (/ 1 0) "/: division by zero")

Tests written using check-expect, check-within, and check-error are saved and evaluated
at the very end of your program.

The vast majority of your examples and tests will be written with check-expect.
check-within will usually be used only for inexact values.



Examples vs. Tests M04 13/21

Examples Tests
Computes a result and compares it to an
expected value.

Computes a result and compares it to an
expected value.

Uses check-expect, check-within, or
check-error.

Uses check-expect, check-within, or
check-error.

Tests the correctness of the code. Tests the correctness of the code.
Are placed between purpose and con-
tract.

Are placed after the function definition.

Written before the code is written. Written after the code is written.
Derived from the function’s purpose only. Takes into account the actual code and

more knowledge of what can go wrong.
Shows typical uses of the function. Focuses on more unusual, complex, or

error-prone cases.
Also called “closed-box tests” Also called “open-box tests”

Contracts M04 14/21

Contracts list the types of data consumed by a function (in the same order as the
parameters), an arrow, and the type of data produced by the function.

Example:

;; sum-of-squares: Num Num -> Num
(define (sum-of-squares n1 n2)
(+ (sqr n1) (sqr n2)))

Types in Contracts M04 15/21

In contracts, we’ll use the following types:

Type Description and Examples
Num Numbers: 3, -22/7, π, #i3.141592653589793
Int Integers: -3, 0, 3
Nat Natural numbers: 0, 1, 2
Bool Booleans: true, false
Char Characters: #\A, #\a
Str Strings: "Hello, world!"

Sym Symbols: 'earth, 'female
Any Values of any type

We will be adding to this list throughout the term.



E
x.

1 Write purpose, contract, examples, and tests for the absolute value function abs.

> Additional contract requirements M04 16/21

If there are important constraints on the parameters that are not fully described in the
contract, add an additional requires section to “extend” the contract.

;; (my-function a b c) ...
;; Examples: ...

;; my-function: Num Num Num -> Num
;; Requires: 0 < a < b
;; c must be non-zero
(define (my-function a b c) ...)

;; Tests: ...

There is no formal notation for the requires section. Aim for clarity and brevity.
Mathematical notation is nice where it makes sense but is not required.

E
x.

2

Consider the function:

;; (sqrt-shift x c) produce the square root of (x - c).
;; Examples:
(check-expect (sqrt-shift 7 3) 2)
(check-expect (sqrt-shift 125 4) 11)

;; sqrt-shift: Num Num -> Num

(define (sqrt-shift x c)
(sqrt (- x c)))

What inputs are invalid?
Write a requires section for this function.



> Contract enforcement M04 17/21

Contracts are important in keeping us unconfused. However, in Racket they are only
human-readable comments and are not enforced by the computer.

In many programming languages, contracts are a part of the language and certain classes
of errors are always caught by the computer before the program is allowed to run. This has
many advantages but also eliminates some programming techniques that we will use.

We can also create functions that check their arguments to catch type errors more
gracefully.

Unless stated otherwise, you may assume that all arguments provided to a function will
obey the contract (including in our automated testing).

Design recipe style guide M04 18/21

CS135 has a style guide that you are expected to adhere to. It includes specifics about the
Design Recipe.

Note that in these slides, sections of the design recipe are often omitted or condensed
because of space considerations.

Consult the course style guide before completing your assignments.

Style guides are required in industry!

Students sometimes consider the design recipe as an afterthought, as “something annoying
they make you do in school”. It’s not.

For reference, take a look at the Google C++ Style Guide.

Design Recipe Summary M04 19/21

The Design Recipe:

provides a starting point for solving the problem.

helps you understand the problem better.

helps you write correct, reliable code.

improves readability of your code.

prevents you from losing marks on assignments!



Goals of this module M04 20/21

You should understand the reasons for each of the components of the design recipe
and the particular way that they are expressed.

You should start to use the design recipe and appropriate coding style for all Racket
programs you write.

Summary: built-in functions M04 21/21

The following functions and special forms have been introduced in this module:

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - / < <= = > >= abs and boolean? ceiling check-error check-expect check-within cond

cos define e else even? exp expt floor integer? log max min modulo negative? not
number->string number? odd? or pi positive? quotient remainder round sgn sin sqr sqrt
string-append string-downcase string-length string-lower-case? string-numeric?
string-upcase string-upper-case? string<=? string<? string=? string>=? string>?
string? substring symbol=? symbol? tan zero?


