
02: Functions

What is Computation? M02 2/49

A computer program is a set of instructions to complete a particular task.

Many tasks are mathematical: the computation of certain mathematical values. This will be
the primary direction we move in this course.

Many mathematical questions we can answer by hand. For example:

E
x.

1 How many natural numbers divide 12 evenly?

! How many natural numbers divide 5,218,303 evenly?

Programming language design M02 3/49

We give computers instructions using a programming language. Programming languages
fall into "families" with common characteristics. Two such families are:

Imperative: based on frequent changes to data

Examples: machine language, Java, C++, Turing, Visual Basic, Python

Functional: based on the computation of new values rather than the transformation of old
ones.

Examples: Excel formulas, LISP, ML, Haskell, Erlang, F#, Mathematica, XSLT, Clojure.

CS135 uses the language Racket, a member of the functional family of languages.



> Syntax, semantics, and ambiguity M02 4/49

Designers of programming languages must solve three problems (illustrated here with
English sentences):

1 Syntax: The way we’re allowed to say things
"?is This Sentence Syntactically Correct"

2 Semantics: What the program means
"Trombones fly hungrily."

3 Ambiguity: Valid programs have exactly one meaning
"Sally was given a book by Joyce."

English rules on these issues are pretty lax. For a programming language, we need rules
that always avoid these problems.

Syntax and ambiguity can be solved with grammars, a topic covered in more depth in
CS230, CS241, CS360, and CS444.

> Why Racket? M02 5/49

Racket allows us to easily develop a semantic model to specify the meaning of our
programs using substitution rules. The first three rules will be developed in this module.

Other reasons to use Racket include:

closely connected to mathematics
functional languages are easier to design and reason about
minimal but powerful syntax
small toolbox with ability to construct additional required tools
interactive evaluator
graduated set of teaching languages
levels the playing field with those who have programmed before

CS116 and CS136 use imperative programming languages. Functional and imperative
share many concepts but also require you to think differently about your programs. Having
experience in both is a good thing!

The DrRacket environment M02 6/49

Designed for education

Sequence of language levels
Two windows:

Definitions (top) used for writing
programs
Interations (bottom) used for
testing, experimenting



> Setting the language in DrRacket M02 7/49

CS135 will progress through the Teaching Languages starting with Beginning Student.
Follow steps 3 - 5 each time you change the language.

1 Under the Language tab, select
Choose Language ...

2 Select Beginning Student under
Teaching Languages

3 Click the Show Details button in the
bottom left

4 Under Constant Style, select true false
empty

5 Under Fraction Style, select Mixed
fractions

Values, expressions, & functions (intro) M02 8/49

Values are numbers or other mathematical objects.
Examples: 5, 4/9, π.

Expressions combine values with operators and functions.
Examples: 5 + 2, sin(2π),

√
2

100π .

Functions generalize similar expressions.
Example:
32 + 4(3) + 2
62 + 4(6) + 2
72 + 4(7) + 2

are generalized by the function
f (x) = x2 + 4x + 2.

> Values (numbers) in Racket M02 9/49

Integers in Racket are unbounded.

Rational numbers are represented exactly:
2, 31

7

Expressions whose values are not rational
numbers are flagged as being inexact:
(sqrt 2) ⇒ #i1.414213562370951.
We will not use inexact numbers much.

In time, we will add other kinds of values: symbols, Booleans, strings, etc.



> Functions in mathematics M02 10/49

Function definitions: f (x) = x2

g(x , y) = x + y
h(x) = x√

x

These definitions consist of:

the name of the function (e.g. g)

its parameters (e.g. x , y )

an algebraic expression using the parameters as
placeholders for values to be supplied in the future

> Function application M02 11/49

Function definitions: f (x) = x2

g(x , y) = x + y
h(x) = x√

x

An application of a function supplies arguments for the parameters, which are substituted
into the algebraic expression.

Example: g(1,3) = 1 + 3 = 4

An argument is substituted each time the associated parameter is used:

Example: h(4) = 4√
4
= 2

The arguments supplied may themselves be applications.

Example: g(g(1,3), f (3))

> Function application M02 12/49

Function definitions: f (x) = x2

g(x , y) = x + y
h(x) = x√

x

We evaluate each of the arguments to yield values.

Evaluation by substitution:
g(g(1,3), f (3)) =
g(1 + 3, f (3)) =
g(4, f (3)) =
g(4,32) =

g(4,9) = 4 + 9 = 13



> Many possible substitutions M02 13/49

Function definitions: f (x) = x2

g(x , y) = x + y
h(x) = x√

x

There are many mathematically valid substitutions:

g(g(1,3), f (3)) = g(1 + 3, f (3))...
g(g(1,3), f (3)) = g(g(1,3),32)...

g(g(1,3), f (3)) = g(1,3) + f (3)...

Having many different valid substitutions will cause trouble when we extend this to
programs. So, we will:

Apply functions only to values (expressions simplified first)

When there is a choice of possible substitutions, always take the leftmost choice.

> The use of parentheses: function application M02 14/49

There are two uses of parentheses in our usual mathematical notation. We’ve just seen one
of them: function application.

The parentheses identify the arguments the function is applied to.

f (3)

g(1,2)

The second use of parentheses is to specify ordering.

> The use of parentheses: ordering M02 15/49

In arithmetic expressions, we often
place operators between their
operands.

Example: 3 − 2 + 4 / 5.

We have some rules (division before
addition, left to right) to specify order of
operation.

Sometimes these do not suffice, and
parentheses are required.

Example: (6 − 4) / (5 + 7).

https://www.xkcd.com/992/



> The use of parentheses: harmonization M02 16/49

If we treat infix operators (+, −, etc.) like functions, we don’t need parentheses to specify
order of operations:

Example: 3 − 2 becomes −(3,2)

Example: (6 − 4) / (5 + 7) becomes /(−(6,4),+(5,7))

The substitution process now works uniformly for functions and operators.

Parentheses now have only one use: function application.

> Function application in Racket M02 17/49

Racket writes its functions slightly differently: the function name moves inside the
parentheses, and the commas are changed to spaces.

Example: g(1,3) becomes (g 1 3)

Example: g(g(1,3), f (3)) becomes (g (g 1 3) (f 3))

These are valid Racket expressions (once g and f are defined).

Functions and mathematical operations are treated exactly the same way in Racket.

Example: (6 − 4) / (5 + 7) becomes (/ (- 6 4) (+ 5 7))

Example: 3 − 2 + 4 / 5 becomes (+ (- 3 2) (/ 4 5))

> Other notes M02 18/49

Racket supports fractions. 3 − 2 + 4 / 5 can be written two ways:

(+ (- 3 2) (/ 4 5))

(+ (- 3 2) 4/5)

Extra parentheses are harmless in arithmetic expressions. Example: (1 + (2 + 3))

They are harmful in Racket. Example: (+ (1 (+ 2 3))) (invalid!)

Only use parentheses when necessary (to signal a function application or some other
Racket syntax).



E
x.

2
Transform each mathematical expression into an Racket expression. Enter them in
DrRacket’s interactions pane to check your work.

2 + 3 2 × 3 44 − 2

3 × 4 + 2
2 + 4
5 − 1

3(1 + (6 / 2 + 5))

> Evaluating a Racket expression M02 19/49

We use a process of substitution, just as with our mathematical expressions.

Each step is indicated using the ‘yields’ symbol ⇒ .

(* (- 6 4) (+ 3 2)) ⇒
(* 2 (+ 3 2)) ⇒
(* 2 5) ⇒
10

The substitution process repeatedly simplifies the program. At each step, the result is a
valid (but simpler) Racket program. It eventually simplifies to a value.

A substitution step finds the leftmost subexpression eligible for rewriting, and rewrites
it by the rules we will describe.

Rule 1: Application of built-in functions M02 20/49

This is our first of the substitution rules, which form our semantic model.

We reuse the rules for the arithmetic expressions we are familiar with to substitute the
appropriate value for expressions like (+ 3 5) and (expt 2 10).

(+ 3 5) ⇒ 8
(expt 2 10) ⇒ 1024

Formally, the substitution rule is:

(f v1 ... vn) ⇒ v

where f is a built-in function, v1 ... vn are values, and v is the value of f (v1, . . . , vn).

Note the two uses of an ellipsis (. . .). What does it mean?



> Ellipses M02 21/49

For built-in functions f with one parameter, the rule is:
(f v1) ⇒ v where v is the value of f (v1)

For built-in functions f with two parameters, the rule is:
(f v1 v2) ⇒ v where v is the value of f (v1, v2)

For built-in functions f with three parameters, the rule is:
(f v1 v2 v3) ⇒ v where v is the value of f (v1, v2, v3)

We can’t just keep writing down rules forever, so we use ellipses to show a pattern:
(f v1 ... vn) ⇒ v where v is the value of f (v1, . . . , vn).

> Racket expressions causing errors M02 22/49

What is wrong with each of the following?

(5 * 14)

(* (5) 3)

(+ (* 2 4)

(* + 3 5 2)

(/ 25 0)

Syntax error: An error discovered when
reading an expression.
Run-time error: An error discovered
when evaluating an expression.

DrRacket Documentation M02 23/49

Racket has many built in functions, too many
to list here. To learn about the built-in
functions, we need to read the
documentation.

E
x.

3 In DrRacket, select Help → Racket
Documentation

This brings up the web browser, like this →

E
x.

4 Scroll down to Teaching → How to
Design Programs Languages, then
Beginning Student.



DrRacket Documentation M02 24/49

Finally we see information about the functions
we are interested in: −→
Bookmark this page in your browser so you
can find it quickly and easily.

E
x.

5

Become more comfortable with the
documentation by looking up each of the
following functions:

quotient remainder expt gcd

Defining functions M02 25/49

A function definition consists of:

a name for the function,

a list of parameters,

a single body expression.

(Racket definition on top; math on
the bottom.) g(x,y) = x+ y

name

parameter(s)“binds” name
 to body

body
(expression)

The body expression typically uses the parameters
together with other built-in and user-defined functions.

Defining functions M02 26/49

Examples:

Math Racket
f (x) = x2 (define (f x) (sqr x))

g(x , y) = x + y (define (g x y) (+ x y))

area(r) = πr2 (define (area r) (* pi (sqr r)))

define is a special form (it looks like a Racket function, but not
all of its arguments are evaluated).

It binds a name to an expression (which uses the parameters
that follow the name).



E
x.

6

In DrRacket’s definitions frame (the top one), use define to create a function
(add-twice a b) that calculates a + 2b.
Add an expression such as
(add-twice 3 5)

Click the “Run” button and verify that DrRacket prints the correct answer in the
interactions pane (13 for the expression give above).
Create and try out at least two other expressions that use add-twice.

> Applying user-defined functions in Racket M02 27/49

An application of a user-defined function substitutes arguments for the corresponding
parameters throughout the definition’s expression.

(define (g x y) (+ x y))

The substitution for (g 3 5) would be (+ 3 5).

All instances of a parameter in the body are replaced in a single step:

(define (h x y) (+ x x x y))

The substitution for (h 10 9) would be (+ 10 10 10 9).

E
x.

7

Given these definitions:
(define (foo x) (+ x 4))

(define (bar a b) (+ a a b))

What is the value of this expression? (* (foo 0) (bar 5 (/ 8 (foo 0))))

Try to figure it out by hand, then compare to the result calculated by DrRacket.



> Applying user-defined functions in Racket M02 28/49

As we have been doing, when faced with choices of substitutions:

1 apply functions only when all arguments are simple values

2 when you have a choice, take the leftmost one

(g (g 1 3) (f 3))
⇒ (g (+ 1 3) (f 3))
⇒ (g 4 (f 3))
⇒ (g 4 (sqr 3))
⇒ (g 4 9)
⇒ (+ 4 9)
⇒ 13

g(g(1,3), f (3))
= g(1 + 3, f (3))
= g(4, f (3))
= g(4,32)

= g(4,9)
= 4 + 9
= 13

Rule 2: Application of user-defined functions M02 29/49

The general substitution rule is:

(f v1 ... vn) ⇒ exp'

where (define (f x1 ... xn) exp) occurs to the left, and exp' is obtained by substituting
into the expression exp, with all occurrences of the formal parameter xi replaced by the
value vi (for i from 1 to n).

Note we are using a pattern ellipsis in the rules for both built-in and user-defined functions
to indicate several arguments.

» Example: M02 30/49

(f v1 ... vn) ⇒ exp'

where (define (f x1 ... xn) exp) occurs to the left, and exp' is obtained by substituting
into the expression exp, with all occurrences of the formal parameter xi replaced by the
value vi (for i from 1 to n).

(define (foo x y) (* x y (sqr y)))

(foo (- 3 1) (+ 1 2))
⇒ (foo 2 (+ 1 2))
⇒ (foo 2 3)
⇒ (* 2 3 (sqr 3))
⇒ (* 2 3 9)
⇒ 54



Identifiers M02 31/49

Functions and parameters are named by identifiers, like f, x-ray, wHaTeVeR.

Identifiers can contain letters, numbers, -, _, ., ?, =, and some other characters.

Identifiers cannot contain space, brackets of any kind, or quotation marks like `'".

Identifiers must contain at least one non-number.

Identifier should be meaningful, where possible. See the style guide.

Observations M02 32/49

As with Mathematical functions:

Changing names of parameters does not change what the function does.
(define (f x) (* x x)) and (define (f z) (* z z)) have the same behaviour.

Different functions may use the same parameter name; there is no problem with
(define (f x) (* x x))

(define (g x y) (- x y))

Parameter order matters. The following two functions are not the same:
(define (g x y) (- x y))

(define (g y x) (- x y))

E
x.

8

Given the definitions, try to determine the value of each expression.
Check your understanding by comparing to what DrRacket gives.

1 (define x 4)
(define (f x) (* x x))
(f 3) ⇒ ?

2 (define (huh? huh?) (+ huh? 2))
(huh? 7) ⇒ ?

3 (define y 3)
(define (g x) (+ x y))
(g 5) ⇒ ?



Defining constants M02 33/49

The definitions k = 3,p = k2 become

(define k 3)
(define p (sqr k))

The effect of (define k 3) is to bind the name k to the value 3.

(define p (sqr k)) is evaluated in two substitution steps:

(define k 3) (define p (sqr k))
⇒ (define k 3) (define p (sqr 3))
⇒ (define k 3) (define p 9)

> Advantages of constants M02 34/49

Constants:

can give meaningful names to useful values (e.g. interest-rate, passing-grade, and
starting-salary).

reduce typing and errors when such values need to be changed.

make programs easier to understand.

Notes:

pi and e are built-in constants.

Constants can be used in any expression, including the body of function definitions

Constants are sometimes (incorrectly) called variables. Constants don’t change (while
the program is running); variables can change. Variables are not used in CS135.

E
x.

9

Given the definitions, try to determine the value of each expression. Check your
understanding by comparing to what DrRacket gives.

(define x 4)
(define (f x) (* x x))
(f 3) ⇒ ?

(define y 3)
(define (g x) (+ x y))
(g 5) ⇒ ?

E
x.

10

Try out the following lines of code in the definitions pane. If you change the order of the
first two lines, what happens and why?
(define x (+ 2 3))

(define y (+ x 4.5))

x

y



Rule 3: Constants M02 35/49

When we encounter a constant used in a program after it has been defined, the following
substitution rule applies:

id ⇒ val

where (define id val) occurs to the left.

» Example: M02 36/49

To avoid a lot of repetition, we adopt the convention that we stop repeating a definition once
its expression has been reduced to a value (since it cannot change after that).

(define x 3)
(define y (+ x 1))
y ⇒
(define x 3)
(define y (+ 3 1))
y ⇒
(define x 3)
(define y 4)
y ⇒
(define x 3)
(define y 4)
4

(define x 3)
(define y (+ x 1))
y ⇒
(define y (+ 3 1))
y ⇒
(define y 4)
y ⇒
4

These two examples are the same except that the
one on the left does not follow this convention.

Comments M02 37/49

Comments let us write notes to ourselves or other programmers.

Comments start with a semi-colon, ;, and extend to the end of the line.

;; By convention, please use two semicolons, like
;; this, for comments which use a whole line.

(+ 6 7) ; comments after code use one semicolon.

;; Let's define some constants:
(define year-days 365) ; not a leap year



Block Comments M02 38/49

Sometimes it’s useful to “comment out” a section of a program. There are two options to do
this quickly:

Select the text and use DrRacket’s Racket → Comment Out with Semicolons command

Use a multi-line comment:

#|
(define (function-to-temporarily-remove x y)

(+ x y))
|#

!
In DrRacket there is a command Racket → Comment Out with a Box.
Never use this command! It makes your assignment impossible to mark.

Helper functions M02 39/49

Consider a function to determine the distance from your current location, (cx , cy ), to the
closest of two other locations, (ax ,ay ) or (bx ,by ):

;; Find the distance from (cx,cy) to the closer of two locations,
;; (ax,ay) and (bx,by).
(define (distance-to-closer cx cy ax ay bx by)

(min (sqrt (+ (sqr (- ax cx)) (sqr (- ay cy))))
(sqrt (+ (sqr (- bx cx)) (sqr (- by cy))))))

(distance-to-closer 0 0 3 4 5 6)

Notice the two instances of nearly identical code.

> Helper functions M02 40/49

A better solution is to create a helper function, a function that helps implement another
function. In this case, the helper function is named distance:

;; Find the distance from (cx,cy) to the closer of two locations,
;; (ax,ay) and (bx,by).
(define (distance-to-closer cx cy ax ay bx by)

(min (distance cx cy ax ay)
(distance cx cy bx by)))

(define (distance x1 y1 x2 y2)
(sqrt (+ (sqr (- x2 x1)) (sqr (- y2 y1)))))

(distance-to-closer 0 0 3 4 5 6)



> Helper functions: purpose and benefits M02 41/49

Helper functions are used for three purposes:

Reduce repeated code by generalizing similar expressions.

Factor out complex calculations.

Give meaningful names to operations.

There are a number of benefits to using helper functions:

They often (but not always) reduce typing.

Well-chosen names make programs easier to understand.

Improvements to the code (bug fix, better performance, better understandability) only
need to be applied once.

> Helper functions: placement M02 42/49

Helper functions are placed after the function that uses them, although there are
exceptions:

Helpers used to define constants must be defined before being used. For
(define c (distance 1 1 3 9)), distance must already be defined.

Helpers used in several functions in the same file are often placed first.

The order of functions specified in an assignment takes precedence over the rules
above: functions completed for part (a) will be placed before functions for part (b).

check-expect M02 43/49

check-expect is a special form that we use to test our functions.

(check-expect (distance 0 0 3 4) 5)
(check-expect (distance 3 4 0 0) 5)
(check-expect (distance 1 1 4 5) 5)

(check-expect expr-test expr-expected) consumes two expressions:

expr-test is the expression (usually a function application) we are testing.

expr-expected is the expected result; the “correct answer”.

So here we are saying that if the distance function is properly written, it should be that
(distance 0 0 3 4) produces 5 and that (distance 1 1 4 5) also produces 5.

This both helps us understand the function, and demonstrate that our code works properly.

We’ll have much more to say about check-expect in upcoming modules.



Scope M02 44/49

The scope of an identifier is where it has effect within the program.

Two kinds of scope (for now): global and function

The smallest enclosing scope has priority

Duplicate identifiers within the same scope will cause an
error

(define f 3)
(define (f x) (sqr x))
Racket Error: f: this name
was defined...

Scoping tools in DrRacket M02 45/49

DrRacket can help you identify an identifier’s scope.

Programming in DrRacket M02 46/49

Use the definitions window:

Can save and restore your work to/from a file

Can accumulate definitions and expressions

Run button loads contents into Interactions window

Provides a Stepper to let one evaluate expressions
step-by-step

Features: error highlighting, subexpression highlighting,
syntax checking



> Programs in Racket M02 47/49

A Racket program is a sequence of definitions and expressions.

The expressions are evaluated, using substitution, to produce values.

Expressions may also make use of special forms (e.g. define), which look like functions,
but don’t necessarily evaluate all their arguments.

Goals of this module M02 48/49

You should understand the basic syntax of Racket, how to form expressions properly,
and what DrRacket might do when given an expression causing an error.

You should be comfortable with these terms: function, parameter, application,
argument, constant, expression.

You should be able to define and use simple arithmetic functions.

You should understand the purposes and uses of the Definitions and Interactions
windows in DrRacket.

You should be able to apply our first three substitution rules to simplify a program to a
value.

E
x.

11

Write a Racket function corresponding to

g(x , y) = x
√

x + y2

((sqrt n) computes
√

n and (sqr n) computes n2.)

E
x.

12

Evaluate the following program manually to determine what the result should be.
Then run it in Racket to check your work:

Note: (sqrt n) computes
√

n and (sqr n) computes n2.

(define (disc a b c) (sqrt (- (sqr b) (* 4 (* a c)))))
(define (proot a b c) (/ (+ (- 0 b) (disc a b c)) (* 2 a)))
(proot 1 3 2) ; ⇒ ?



Summary: built-in functions M02 49/49

The following functions and special forms have been introduced in this module:

* + - / abs ceiling check-expect check-within cos define e exp expt floor log max
min modulo pi quotient remainder round sgn sin sqr sqrt tan

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - / abs ceiling check-expect check-within cos define e exp expt floor log max min

modulo pi quotient remainder round sgn sin sqr sqrt tan


