
CS135 T08 Page 1 of 9

CS135 T08
General Trees, Mutual Recursion, and Local

CS135 T08 Page 2 of 9

Descendants
Ø Develop a data definition to store descendants of King George VI.
Ø Write templates for functions to process the descendants.

George VI
b. 1895

Elizabeth II
b. 1926

Margaret
b. 1930

Charles III
b. 1948

Andrew
b. 1960

Edward
b. 1964

Anne
b. 1950

David
b. 1961

Sarah
b. 1964

William
1982

Harry
1984

Beatrice
1988

Eugenie
1990

Sienna
2021

George
2013

Charlotte
2015

Louis
2018

Archie
2019

Lilibet
2021

CS135 T08 Page 3 of 9

Descendants Data Definition
(define-struct person (name birth children))
;; A Person is a (make-person Str Nat (listof Person))
;; Requires: names are unique

;; person-template: Person -> Any
(define (person-template p)
 (... (person-name p)
 (person-birth p)
 (listof-person-template (person-children p))))

;; listof-person-template: (listof Person) -> Any
(define (listof-person-template lop)
 (cond [(empty? lop) ...]
 [else (... (person-template (first lop))
 (listof-person-template (rest lop)))]))

CS135 T08 Page 4 of 9

Birthdate
Ø Write (birthdate name p), which finds the descendant of p with the given

name and produces their birthdate or false if not found.

CS135 T08 Page 5 of 9

Birthdate tests
(check-expect (birthdate "George VI" george) 1895)
(check-expect (birthdate "Anne" george) 1950)
(check-expect (birthdate "Sarah" george) 1964)
(check-expect (birthdate "Justin" george) false)

;; (birthdate name p) finds the birthdate of the named person.
;; birthdate: Str Person -> (anyof false Nat)
(define (birthdate name p) ...)

CS135 T08 Page 6 of 9

Born After
;; (born-after year p) produces a list of all the names in p and
;; p’s descendants that were born after the specified year.

;; born-after: Nat Person -> (listof Str)
(define (born-after year p) ...)

(check-expect (born-after-v1 2023 george) empty)
(check-expect (born-after-v1 2018 george)
 (list "Sienna" "Lilibet" "Archie" "Louis"))

We’ll solve this problem two different ways:
Ø with append
Ø with an accumulator

CS135 T08 Page 7 of 9

Nearest common ancestor
(nearest-common-ancestor name1 name2 p) finds the nearest common
ancestor, within p and p’s descendants, of name1 and name2. We assume the
names are unique within the descendants tree.

Margaret
b. 1930

Edward
b. 1964

Anne
b. 1950

David
b. 1961

Sarah
b. 1964

Harry
1984

Eugenie
1990

Charlotte
2015

Louis
2018

Archie
2019

Lilibet
2021

Elizabeth II
b. 1926

Charles III
b. 1948

Andrew
b. 1960

William
1982

Beatrice
1988

Sienna
2021

George
2013

George VI
b. 1895

CS135 T08 Page 8 of 9

Nearest common ancestor – strategy
Ø Find the “path” – the list of people – that lead from p to name1 (but not including

name1).
Ø Find the “path” – the list of people – that lead from p to name2 (but not …).
Ø Produce the last item on the common prefix.

Considera*ons
Ø The paths might be different lengths.
Ø What if one or both of the names are not found?
Ø Who is the nearest common ancestor of George VI?
Ø Who is the nearest common ancestor of “Beatrice” and “Beatrice”?

CS135 T08 Page 9 of 9

Nearest common ancestor – design recipe
;; (nearest name1 name2 p) finds the name of the nearest common ancestor
;; of name1 and name2 within the descendants of p.

;; nearest: Str Str Person -> (anyof Str false)
(define (nearest name1 name2 p) ...)

(check-expect (nearest "Elizabeth II" "Margaret" george) "George VI")
(check-expect (nearest "Charles III" "Edward" george) "Elizabeth II")
(check-expect (nearest "George" "Charlotte" george) "William")
(check-expect (nearest "Archie" "Bilbo Baggins" george) false)
(check-expect (nearest "Beatrice" "Beatrice" george) "Andrew")
(check-expect (nearest "George VI" "Beatrice" george) false)

