
CS135 Tutorial 05 Page 1 of 13

CS135 Tutorial 05
Recursion with more lists and association lists

CS135 Tutorial 05 Page 2 of 13

Goals
• Get more comfortable with recursing on 2 lists at the same time, consuming

association lists
• Practice some tracing

CS135 Tutorial 05 Page 3 of 13

CS135 Search Data Definition
;; A doc-list (DL) is one of:
;; * empty
;; * (cons Str DL)
;; Requires: each doc (i.e. Str) only occurs once in the doc-list
;; the doc-list is in lexicographic order

;; An Inverted List (IL) is one of:
;; * empty
;; * (cons (list Str DL) IL)
;; Requires: each key (i.e. Str) only occurs once in the IL.
;; the keys occur in lexicographic order in the IL.

CS135 Tutorial 05 Page 4 of 13

CS135 Search: both
Create a function both which consumes two DLs and produces a doc-list (DL) that
occur in both DLs. For example,
(both (list "b.txt") (list "b.txt" "c.txt"))
=> (list "b.txt")
Hint: We can take advantage that doc-lists are sorted

We can also use the
following predicates:

• string<?

• string<=?

• string=?

• string>?

• string>=?

CS135 Tutorial 05 Page 5 of 13

CS135 Search: both (trace)
(both (list "a.txt" "b.txt" "c.txt") (list "b.txt" "c.txt" "d.txt"))
=> (both (list "b.txt" "c.txt") (list "b.txt" "c.txt" "d.txt"))
=> (cons "b.txt" (both (list "c.txt") (list "c.txt" "d.txt"))
=> (cons "b.txt" (cons "c.txt" (both (list) (list "d.txt"))
=> (cons "b.txt" (cons "c.txt" empty)
= (list "b.txt" "c.txt")

CS135 Tutorial 05 Page 6 of 13

CS135 Search: exclude
Create a function exclude which consumes two DLs and produces a doc-list (DL)
that occur in the first DL but not the second one. For example,
(exclude (list "b.txt" "c.txt") (list "b.txt"))
=> (list "c.txt")

CS135 Tutorial 05 Page 7 of 13

CS135 Search: both -> exclude
(define (both doc-lst1 doc-lst2)
 (cond [(or (empty? doc-lst1) (empty? doc-lst2)) empty]
 [(string=? (first doc-lst1) (first doc-lst2))
 (cons (first doc-lst1) (both (rest doc-lst1) (rest doc-lst2)))]
 [(string<? (first doc-lst1) (first doc-lst2))

 (both (rest doc-lst1) doc-lst2)]
 [else (both doc-lst1 (rest doc-lst2))]))

CS135 Tutorial 05 Page 8 of 13

CS135 Search: both -> exclude
(define (exclude doc-lst1 doc-lst2)
 (cond [(empty? doc-lst1) empty]
 [(empty? doc-lst2) doc-lst1]
 [(string=? (first doc-lst1) (first doc-lst2))
 (cons (first doc-lst1) (both (rest doc-lst1) (rest doc-lst2)))]
 [(string<? (first doc-lst1) (first doc-lst2))

 (both (rest doc-lst1) doc-lst2)]
 [else (both doc-lst1 (rest doc-lst2))]))

CS135 Tutorial 05 Page 9 of 13

CS135 Search: both -> exclude
(define (exclude doc-lst1 doc-lst2)
 (cond [(empty? doc-lst1) empty]
 [(empty? doc-lst2) doc-lst1]
 [(string=? (first doc-lst1) (first doc-lst2))
 (cons (first doc-lst1) (exclude (rest doc-lst1) (rest doc-lst2)))]
 [(string<? (first doc-lst1) (first doc-lst2))

 (both (rest doc-lst1) doc-lst2)]
 [else (both doc-lst1 (rest doc-lst2))]))

CS135 Tutorial 05 Page 10 of 13

CS135 Search: both -> exclude
(define (exclude doc-lst1 doc-lst2)
 (cond [(empty? doc-lst1) empty]
 [(empty? doc-lst2) doc-lst1]
 [(string=? (first doc-lst1) (first doc-lst2))
 (exclude (rest doc-lst1) (rest doc-lst2))]
 [(string<? (first doc-lst1) (first doc-lst2))

 (cons (first doc-lst1) (exclude (rest doc-lst1) doc-lst2))]
 [else (both doc-lst1 (rest doc-lst2))]))

CS135 Tutorial 05 Page 11 of 13

CS135 Search: both -> exclude
(define (exclude doc-lst1 doc-lst2)
 (cond [(empty? doc-lst1) empty]
 [(empty? doc-lst2) doc-lst1]
 [(string=? (first doc-lst1) (first doc-lst2))
 (exclude (rest doc-lst1) (rest doc-lst2))]
 [(string<? (first doc-lst1) (first doc-lst2))

 (cons (first doc-lst1) (exclude (rest doc-lst1) doc-lst2))]
 [else (exclude doc-lst1 (rest doc-lst2))]))

Done!

CS135 Tutorial 05 Page 12 of 13

CS135 Search: doc-retrieve
Create a function (keys-retrieve doc an-il) which consumes a Str and an
IL and produces a (listof Str) with lexicographic ordering. The values in the
produced list are the keys from an-il whose doc-lists contain doc. If doc is not
contained in the doc-list associated with any keys in an-il, then keys-retrieve
produces empty.

CS135 Tutorial 05 Page 13 of 13

CS135 Search: search
Create a function search which consumes a Sym, two Strs and an IL. It
produces a doc-list (DL). The arguments for search will always be in one of two
possible formats:
• (search 'both str1 str2 an-il) which, given two keys str1 and str2

from an-il, produces a doc-list (DL) containing the documents that are
present in both of the keys’ associated doc-lists.

• (search 'exclude str1 str2 an-il) which, given two keys str1 and
str2 from an-il, produces a doc-list (DL) containing the documents that are
present in the doc-list associated with the key str1, but not the key str2.

