
CS 135 Style Guide

Computer Science @ The University of Waterloo
Last Updated: 2024-06-17

1 Introduction
The code you submit for assignments, as with all code you write, can be made more
readable and useful by paying attention to style. This includes the placement of com-
ments, choice of variable and function names, whitespace and indentation. None of these
things affect the execution of a program, but they affect its readability and extensibility.

As in writing English prose, the goal is communication, and you need to think of the
needs of the reader. This is especially important when the reader is assigning you a
grade.

This document is organized linearly to match the topics covered in class. The guide
is cumulative; new guidelines are added to the old and only rarely replace previous
guidelines. You’re responsible for the style guide up to and including the current lecture
module’s material.

The examples in the presentation slides, handouts and tutorials/labs are often condensed
to fit them into a few lines; you should not imitate their condensed style for assignments,
because you do not have the same space restrictions.

2 M02: The Basics

2.1 Comments

Comments should be used for documentation purposes and to explain why code does
what it does.

Racket comments begin with a semi-colon (;). By convention, full-line comments begin
with two semi-colons:

• ;; starts a full-line comment

• ; starts a comment at the end of a line

Use in-line comments sparingly. If you are following this style guide, you should not
need many additional comments. Any such comment can either be put on its own line,
or tacked onto the end of a line of code, providing it fits.

2.2 File header

Your file should start with a header to identify yourself, the term, the assignment and
the problem. There is no specifically required format, but it should be clear and assist
the reader. The following is a good example.

1

;;
;; ***
;; Rick Sanchez (12345678)
;; CS 135 Fall 2024
;; Assignment 03, Problem 4
;; ***
;;

2.3 Line length and indentation

Overly long lines are hard to read. That’s why newspaper columns are generally short.
Keep your line lengths no longer than 102 characters. (102 is the default maximum in
DrRacket.)

DrRacket has a setting to show when you’ve exceeded the common style guide’s recom-
mended line length:

Edit → Preferences → Editing tab → General Editing sub-tab

→ Maximum character width guide.

If your lines are getting too long, they should be broken at sensible places so that the
code is readable. Code is hard to read if it’s either too horizontal (lines are too long) or
too vertical (lines are so short that there are needlessly many).

Indentation (appropriate spacing at the beginning of each line) plays a big part in read-
ability. It is used to indicate level of nesting, to align related subexpressions (e.g.,
arguments of a function), and to make keywords more visible. DrRacket’s built-in editor
will help with these. If you start an expression (my-fn and then hit enter or return,
the next line will automatically be indented a few spaces. However, DrRacket will never
break up a line for you, and you can override its indentation simply by putting in more
spaces or erasing them. DrRacket also provides a menu item for reindenting a selected
block of code (Racket → Reindent) and even a keyboard shortcut reindenting an entire
file (Ctrl+I in Windows; Cmd-I on a Mac).

Here are examples showing both good and bad indentation and line lengths:

;; GOOD
(define (distance posn1 posn2)
(sqrt (+ (sqr (- (posn-x posn2) (posn-x posn1)))

(sqr (- (posn-y posn2) (posn-y posn1))))))

;; GOOD
(define (distance posn1 posn2)
(sqrt (+ (sqr (- (posn-x posn2)

(posn-x posn1)))
(sqr (- (posn-y posn2)

(posn-y posn1))))))

;; BAD (too horizontal)
(define (distance posn1 posn2)
(sqrt (+ (sqr (- (posn-x posn2) (posn-x posn1))) (sqr (- (posn-y posn2)

2

(posn-y posn1))))))

;; BAD (too vertical)
(define (distance posn1 posn2)
(sqrt
(+
(sqr
(-
(posn-x
posn2)
(posn-x
posn1)))

(sqr
(-
(posn-y
posn2)
(posn-y
posn1))))))

If indentation is used properly to indicate level of nesting, then closing parentheses can
just be added on the same line as appropriate. You will see this throughout the textbook
and presentations and in the GOOD example above. Some styles for other programming
languages expect that you place closing brackets on separate lines that are vertically lined
up with the opening brackets. However, in Racket this tends to negatively effect the
readability of the code and is considered “poor style”.

2.4 Identifiers

Identifiers (names of functions, parameters, constants) should be meaningful, but not
awkwardly long nor cryptically short. The first priority should be to choose a mean-
ingful name. Names like salary or remittance would be appropriate in a program that
calculates taxes.

The importance of a meaningful name increases with the amount of code in which it
can appear. A parameter to a short function can be shorter and more cryptic than a
constant appearing throughout a file, for example.

Sometimes a function will consume values that don’t have a meaning attached, for
example, a function that calculates the maximum of two numbers. In that case, choose
names that reflect the structure of the data. That is, n for numbers, i for integers, lst
for a list or lon for a list of numbers, and so on.

Use the Racket convention of lowercase letters and hyphens such as top-tax-bracket.
Although Racket allows the use of Unicode characters, it is best to avoid them and just
use characters that appear directly on your keyboard.

If a name is given as part of a problem, be sure to use that name. It may be vital for
our marking scripts to evaluate your function correctly or simply be a name that makes
marking easier for the humans involved.

Pay attention to conventions. Conversion functions often have an arrow in the name

3

(e.g., fahrenheit->celsius). In course materials we sometimes typeset arrows as→but
in your code you should simply use -> (hyphen followed by greater-than).

2.5 Constants

Constants should be used to improve your code in the following ways:

• To improve the readability of your code by avoiding “magic” numbers. A “magic”
number is a number with unclear origins for those without specific domain knowl-
edge. For example, 0.13 may be perfectly clear as Ontario’s goods and services
tax rate to an accountant, but to most of us it is a magic number that someone
just picked out of the air. In a program, it should probably be a constant such as

(define hst 0.13) ; HST Rate in Ontario effective July 1, 2010

• To improve flexibility and allow easier updating of special values. If the value of
hst changes, it is much easier to make one change to the definition of the constant
than to search through an entire program for the value 0.13. When this value is
found, it may not be obvious if it refers to the tax rate, or whether it serves a
different purpose and should not be changed.

• To define values for testing and examples. As values used in testing and examples
become more complicated (e.g., lists, structures, lists of structures), it can be
very helpful to define named “testing constants” to be used in multiple tests and
examples.

Zero and one rarely need to be made a constant.

Constants that have a name or distinct meaning outside of your program should be
defined as a constant using that name. Examples: G (the gravitational constant), g
(acceleration due to gravity), π (except that it’s already built-in), etc.

“Magic numbers” do not need to be defined as a constant if they are used only once
in a conversion function. For example, in the following neither 32 nor 5/9 needs to be
defined as a constant.

;; (f->c degrees-f) produces the temperature in degrees Celsius
;; given degrees-f degrees Farenheit

;; f->c: Num -> Num
(define (f->c degrees-f)
(* (- degrees-f 32) 5/9))

On the other hand, defining a constant with a meaningful name (eg (define seconds/minute

60) and (define minutes/hour 60)) can definitely improve the readability of your pro-
grams and are encouraged – even if only used once in conversion function.

If sets of constants are related, group them together, and separate blocks of related
constants with a line break. You may also include a comment to indicate the purpose
of these constants:

4

;; Tax rates
(define hst 0.13)
(define gst 0.05)

;; Income levels
(define poor-income 10000)
(define rich-income 1000000)

When naming constants, be careful that the name of the constant is not tied to its
value. If changing the value of the constant would make its name incorrect, then you
have chosen a bad name.

For example, the following is a bad name for hst because if the HST value ever changes
then the name becomes incorrect.

(define hst_13_percent 0.13)

2.6 Function comments

Each function should be preceded by comments that describe the function’s purpose.
Because these are whole-line comments, begin with two semi-colons.

Leave two blank lines before the comment to separate this function from those that
precede it.

An example:

;; (twice n) produces a value that is twice as large as n
(define (twice n) (* 2 n))

;; (thrice n) produces a value that is three times as large as n.
(define (thrice n) (* 3 n))

We will have much more to say about documenting functions in the following sections.

2.7 Ordering your assignment

You should have an identifying header at the top (see above) of your file.

If the assignment asks for multiple problems in the same file, put them in the same order
as the assignment, separated by a visual indicator. For example,

;;
;; Problem 3
;;

Constants that apply to a specific problem should be grouped with that problem. Con-
stants that apply to more than one problem should be grouped near the top of your file,
below the header.

5

2.8 Summary

1. Start your file with an identifying header.

2. Place problems in the order given with a visual separator.

3. Limit lines to 80-102 characters.

4. Use DrRacket’s indentation tool. Split lines so they are neither too vertical nor
too horizontal.

5. Choose meaningful identifier names, particularly when they span a larger amount
of code.

6. Name identifiers in Racket style (lowercase; dashes).

7. Use constants for “magic numbers” (with the possible exception of numbers used
once in a conversion function).

3 M03: Simple Data

3.1 Identifiers

Pay attention to naming conventions. Functions that produce a Boolean often have
names ending in a question mark (even?, can-vote?).

3.2 Comparison Operators

You will almost never use boolean=? to compare boolean values. Instead you can use
the boolean directly. For example, instead of

(cond
[(boolean=? x true) ...]
[...])

You can write:

(cond
[x ...]
[...])

Similarly you can replace (boolean=? x false) with (not x). If you do not know
whether x is a boolean value, you might use (false? x), which produces false for
non-Boolean values. However, you should use this sparingly – only when the contract of
your function allows for x to be both Bool and something else.

Racket has an equality comparison called eq? but we never use it in CS 135 and you
shouldn’t either.

Be careful to use the most specific comparison operator the contract of your function al-
lows. In particular, be careful about using equal? if a more specific comparison operator
(such as char=? or plain old =) will suffice.

6

3.3 Tests

As you write your test suite, you may want to think about whether the following values
deserve specific tests.

Parameter type Consider trying these values
Nat 0, small values, large values, specific boundaries
Int similar to Nat, but also negative values
Num similar to Int, but also, non-integer values
Bool true, false
Str empty string (""), length 1, length > 1, extra whitespace, different

character types, etc.

Num values can be exact (representable as a rational number) or inexact. If your function
produces inexact values then you should test for inexact values; if it does not produce
inexact numbers when provided exact arguments, such tests are optional and you may
assume all Num arguments are exact.

The test suite should include tests for each question/answer pair in a cond expression,
including the else statement. Also ensure that complex Boolean expressions are ade-
quately tested.

3.4 Indentation

For conditional expressions each question must appear on a separate line. If the an-
swer clause is short it may be placed on the same line; otherwise, it should be placed
on a separate line. The cond may be on its own line or share the line with the first
question/answer pair.

Marks may be deducted if a cond is too dense or confusing.

cond examples:

;; GOOD: short question/answer pairs can be one line each
(cond [(< bar 0) (neg-foo n)]

[else (foo n)])

;; BAD: (place each question on a separate line)
(cond [(< bar 0) (neg-foo n)] [else (foo n)])

;; GOOD: Place long questions/answers on separate lines
(cond

[(and (>= bar 0) (<= bar 100))
(really-long-function-or-expression (/ bar 100))]
[else
(some-other-really-long-function-or-expression bar)])

It is considered poor style for the else clause to be a single cond. For example,

(define (count-char/list ch loc)
(cond [(empty? loc) 0]

7

[else (cond [(char=? ch (first loc))
(+ 1 (count-char/list ch (rest loc)))]
[else (count-char/list ch (rest loc))])]))

can be trivially transformed into the simpler and more readable

(define (count-char/list ch loc)
(cond [(empty? loc) 0]

[(char=? ch (first loc))
(+ 1 (count-char/list ch (rest loc)))]
[else (count-char/list ch (rest loc))]))

4 M04: Introductory Design Recipe
The design recipe is first and foremost a process that helps you develop working, trusted
code. It leaves behind some artifacts1 that are useful for future readers (yourself, mark-
ers, profs) to understand and trust your code.

This section of the Style Guide describes the artifacts. But just putting those artifacts
into your code after you’ve written it misses the point. Refer to lectures for the process
that produces the artifacts. Then touch them up to match this style.

Course staff will be reluctant to assist you unless the appropriate artifacts from the
Design Recipe process are present.

4.1 Design Recipe Sample

Purpose

{
;; (sum-of-squares p1 p2) produces the sum of

;; the squares of p1 and p2

Examples

{;; Examples:

(check-expect (sum-of-squares 3 4) 25)

(check-expect (sum-of-squares 0 2.5) 6.25)

Contract

{
;; sum-of-squares: Num Num -> Num

Function Header

{
(define (sum-of-squares p1 p2)

Function Body

{
(+ (* p1 p1)

(* p2 p2)))

Tests

{;; Tests:

(check-expect (sum-of-squares 0 0) 0)

(check-expect (sum-of-squares -2 7) 53)

1“a tangible by-product produced during the development of software” (Wikipedia)

8

4.2 Purpose

;; (sum-of-squares p1 p2) produces the sum of
;; the squares of p1 and p2

The purpose statement has two parts: an illustration of how the function is applied, and
a brief description of what the function does. The description does not have to explain
how the computation is done; the code itself addresses that question.

• The purpose starts with an example of how the function is applied, which uses the
same parameter names used in the function header. This will include parentheses:
(sum-of-squares p1 p2)

• Do not write the word “purpose”.

• The description must make clear the purpose of each parameter. Sometimes that
can be done only with well-chosen names but usually the parameter names are
referenced in the function description to relate the parameter to what the function
does.

Do not include parameter types and requirements in your purpose statement —
the contract already contains that information.

• It’s often helpful to use the word ‘produces’ to highlight what the function creates
as an output.

• If the description requires more than one line, indent the next line of the purpose
several spaces.

• A function should have a single purpose. If you find the purpose description of
one of your functions is too long or too complicated, you might:

– Describe the function at a higher level of abstraction

– Reorganize the function using the problematic function, perhaps to use addi-
tional helper functions

4.3 Examples

;; Examples:
(check-expect (sum-of-squares 3 4) 25)
(check-expect (sum-of-squares 0 2.5) 6.25)

The examples should be chosen to illustrate “typical” uses of the function and to illu-
minate some of the difficulties to be faced in writing it. If the purpose indicates that
some values are handled differently (perhaps zero or negative numbers or empty strings),
include them in your examples.

Write your examples before you start writing your code. These examples will help you to
organize your thoughts about what exactly you expect your function to do. You might
be surprised by how much of a difference this makes.

9

In DrRacket, examples are written using check-expect (and much less frequently, check-within
and check-error) so they can serve both as examples and as executable tests for your
function.

The arguments used in your examples need not be big or hard to calculate. In fact,
choose values so that you can easily calculate the expected result yourself. Just don’t
hide any complexities by consistently choosing arguments that trivialize the function’s
operation (for example, always multiplying by zero).

The examples do not have to cover all the cases that the code addresses; that is the job
of the tests, which are designed after the code is written.

4.4 Contract

;; sum-of-squares: Num Num -> Num

The contract contains the name of the function, a colon, the types of the arguments it
consumes, an arrow, and the type of the value it produces. The contract is analogous
to functions defined mathematically that map from a domain to a co-domain (or more
loosely to the range of the function). Unlike purpose statements, the function is not
enclosed in parentheses.

Use -> to indicate the arrow. Do not use =>.

Contracts sometimes get longer than the recommended line length. If they do then split
them up over two lines. Breaking the line just after the arrow usually works. If you break
a contract over a second line indent subsequent lines as you do for purpose statements.

The following is a list of types that are valid in Racket:

Parameter Type Sample values
Any Any value is acceptable
Num Any number, including rational numbers
Int Integers: ..., -2, -1, 0, 1, 2, ...

Nat Natural Numbers (non-negative Integers): 0, 1, 2, ...

Bool Boolean values (true and false)
Sym Symbol (e.g., 'red, 'earth)
Str String (e.g., "Hello There", "a string")
Char Character (e.g., #\a, #\A, #\newline)

We will be adding to this list throughout the course.

If there are important constraints on the parameters that are not fully described in the
contract, add an additional Requires section after the contract. For example, this can
be used to indicate an Int must be in a specific range or a Str must have a specific
length.

Single requirements can be on the same line as Requires:. If there are only a few
requirements that can be specified in less than the line length guidelines, you may
separate them with commas:

;; neeblu: Nat Nat -> Nat

10

;; Requires: n1 > 0, 8 <= n2 < 100
(define (neeblu n1 n2) ...)

Otherwise multiple requirements should start on a separate line and each line should be
indented several spaces. For example:

;; neeblu: Nat Nat -> Nat
;; Requires:
;; n1 > 0
;; 8 <= n2 < 100
(define (neeblu n1 n2) ...)

Requirements are often mathematical in nature and can be easily expressed mathemat-
ically. But they don’t need to be. For example:

;; neeyel: Str Nat -> Str
;; Requires: s is non-empty, n < length(s)
(define (neeyel s n) ...)

The guiding principle is that your requirements should be easy for humans to read and
understand.

4.5 Testing

Testing is a vital part of programming. Programmers often talk about two kinds of
testing: closed-box testing and open-box testing. The “box” in these names is an analogy
for a machine (the function) that is enclosed in a box. For one kind of test the box is
open. You can see inside to understand how the machine works. In the other kind of
test, the box is closed; you can’t see how the machine works, only what goes into it (the
arguments it consumes) and what comes out (the value it produces).

In DrRacket both kinds of tests are written using check-expect (and less frequently
check-within and check-error). This makes them executable, so it’s easy to determine
whether they “pass” or not.

4.5.1 Closed-box Testing

Closed-box tests are based on the function’s purpose statement. Given the purpose
statement, it should be possible to determine what approproate inputs are and what
the function should produce for those inputs. There is no need to understand how the
function works. You only need to understand what it is supposed to do.

From the purpose statement, we can determine that sum-of-squares consumes two num-
bers. We can also determine that given 3 and 4, for example, it should produce 32 + 42

or 25. We don’t need to know whether the function applies an exponent function or
multiplies the arguments; all we need to know is that given 3 and 4 it should produce
25.

In CS135 we generally refer to closed-box tests as “Examples” (see above!). We use that
name to emphasize several things:

11

• Our examples are part of the documentation.

• Examples should be done by you, by hand, as part of the development process
before writing the code.

4.5.2 Open-box Testing

;; Tests:
(check-expect (sum-of-squares 0 0) 0)
(check-expect (sum-of-squares -2 7) 53)

Open-box testing endeavours to test every part of the code. To do this, the “box” needs
to be open – you need to be able to examine the function and how it works. For example,
if a conditional expression has three possible outcomes, include tests that check each of
the possible outcomes.

4.5.3 General Testing Comments

There should always be closed-box tests (examples) for a function. If you can’t derive
tests from the purpose statement, the purpose statement needs work.

There may or may not be open-box tests. It depends on the complexity of the function
and whether there are cases that aren’t obvious from the purpose.

Place several closed-box tests before the function to serve as examples and documenta-
tion. Place any remaining closed-box tests and your open-box tests after the function.

Your tests should be directed: each one should aim at a particular case, or section of
code. Some people write tests that use a large amount of data; this is not necessarily the
best idea, because if they fail, it is difficult to figure out why. Others write lots of tests,
but have several tests in a row that do essentially the same thing. It’s not a question of
quantity, but of quality. You should design a comprehensive test suite that is no larger
than necessary.

If you have many tests for your function you may break them up into blocks and organize
them thematically. Separate each block with one line, and comment the theme of the
block.

The submission process in CS135 includes some basic tests to ensure, for example, that
your code uses the expected function names. If it doesn’t, it is unmarkable by our
testing software and you will lose many marks. Be sure to submit early enough to
correct mistakes the basic tests catch.

4.6 Helper Functions

Do not use the word “helper” in your function name: use a descriptive function name.

Ideally, a helper function will use the full design recipe and have all the artifacts: purpose
statement, examples, contract, function definition, and tests. However, when we have
required this in the past students have avoided writing helper functions – which is far
worse than taking shortcuts on the development process.

12

As a concession, we require only a purpose, contract, and at least one illustrative exam-
ple. We encourage going through the entire design recipe process, but do not demand
it for helper functions.

Marks may be deducted if you are not using helper functions when appropriate.

Place helper functions after the function they help so that the most interesting function
(the one requested on the assignment) appears first. Exceptions to this ordering:

• An assignment that specifies functions in a different order (e.g. write two helper
functions and then the main function that uses them) should place the functions
in the order specified.

• Functions used in multiple assignment problems contained in the same file should
be placed towards the beginning of the file, grouped, and with a header to indicate
they are commonly used helpers.

• A helper function that is used to define constants must be placed before it is used.

The guiding principle is to organize your code so that it is easy for others (e.g., the TAs
marking your assignment) to read and understand.

Be sure to keep design recipe components together. Do not define new helper functions
or constants in the middle of the design recipe for your main function; instead define
them before (for constants) or after (for helpers) all design recipe components for the
function you are writing.

5 M05: Structures

5.1 Data Definitions

When you define a structure, it should be followed by a type definition, which specifies
the type for each of the fields. For example:

(define-struct date (year month day))
;; A Date is a (make-date Nat Nat Nat)

If there are any additional requirements on the fields not specified in the type definition,
a requires section can be added. For example:

(define-struct date (year month day))
;; A Date is a (make-date Nat Nat Nat)
;; Requires:
;; fields correspond to a valid Gregorian Calendar date
;; year >= 1900
;; 1 <= month <= 12
;; 1 <= day <= 31

The data definition’s name should be the same as the structure name but using Camel-
Case (use a capital letter for the first letter of each “word” in the name). It should be
used in applicable contracts.

13

The meaning or purpose of each field should be made clear. In the date example the
field names together with the requirements are sufficient. If additional explanatory text
is necessary, one suggested approach is to follow the types with a “where” clause: “A
Foo is a (make-foo Nat Int) where bar is ...”. Another option is to elaborate on the field
meanings as part of the requires section.

5.2 Templates

We always recommend writing a template for each new data definition, but it is not
required unless explicitly stated in the assignment. When including a template it is
placed immediately after the data definition.

For structures, the template for a function that consumes the structure will have place-
holders for each field in the same order as they are listed in the define-struct.

(define-struct date (year month day))
;; A Date is a (make-date Nat Nat Nat)

;; date-template: Date -> Any
(define (date-template d)
(... (date-year d) ...
... (date-month d) ...
... (date-day d) ...))

For mixed user-defined types, there is a corresponding cond question for each possible
type:

;; A CampusID is one of:
;; * a StudentID
;; * a StaffID
;; * a FacultyID
;; * 'guest

;; campusid-template: CampusID -> Any
(define (campusid-template cid)
(cond
[(studentid? cid) ...]
[(staffid? cid) ...]
[(facultyid? cid) ...]
[(symbol=? 'guest cid) ...]))

As you combine user-defined types, their templates can also be combined. See the lecture
materials for more examples.

6 M06: Lists

6.1 Data definitions and templates

Data definitions introduce a new type and should be included early in the file, certainly
before they are used, and above blocks of constants or helper functions.

14

Templates should be placed immediately after the data definition they consume, unless
specified otherwise in the assignment. Including templates for data definitions is optional
unless we ask for them on the assignment.

It is permissible (encouraged!) to define data definitions purely to increase the readability
and understandability of your code. Such user-defined types should have capitalized
names. Those names may be used in contracts. For example:

;; A NumGrade is an Int in the range [0, 100] representing a grade in
;; a course.

;; cumulative-average: (listof NumGrade) -> NumGrade
(define (cumulative-average grades) ...)

Because the limits on a NumGrade are included in the data definition, the contract for
cumulative-average need not specify that grades are between 0 and 100.

6.2 Testing

For recursive data, your examples must include each base case and at least one recursive
case. In all likelihood, this will include each case described in the data definition for the
type consumed by the function.

6.3 Contracts

In addition to our previous types (Any, Num, Int, Nat, Bool, Str, Char, and Sym), we now
add:

Parameter Type Sample values
(listof T) A list of arbitrary length with elements of type T, where T

can be any valid type. For example: (listof Any),
(listof Int).

(ne-listof T) A non-empty list of arbitrary length with elements of type T.
(list T1 T2...) A list of fixed length with elements of type T1, T2, etc. For

example: (list Int Str) always has two elements: an Int

(first) and a Str (second).
(anyof T1 T2...) Mixed data types. For example, (anyof Int Str) can be either

an Int or a Str. The types T1, T2, ... can also be specific
values such as false (e.g., a search function’s failure indicator).

UserDefined For types that you define (and UserDefined is replaced by your
chosen name).

6.4 Wrapper Functions

When using wrapper functions, only one of the functions requires tests. If the required
function is the wrapper function, then include the examples and tests with it. Other-
wise, use your judgment to choose the function where examples and tests seem most
appropriate. The other function is considered to be a helper and requires one example.

15

Helper functions that are wrapped by another function sometimes are named in terms of
the main function, with a / character indicating the specialization. In the example below,
remove-from/char is a helper function for remove-from that consumes a (listof Char).
This naming style is optional but you are encouraged to use it for your functions.

In the following example, the tests and examples are included with the wrapper function
remove-from.

;; (remove-from s c) produces a new string like s, instances of
;; the character c removed
;; Examples:
(check-expect (remove-from "" #\X) "")
(check-expect (remove-from "ababA" #\a) "bbA")
(check-expect (remove-from "Waterloo" #\x) "Waterloo")

;; remove-from: Str Char -> Str
(define (remove-from s c)
(list->string (remove-from/char (string->list s) c)))

;; Tests:
(check-expect (remove-from "X" #\X) "")
(check-expect (remove-from "A" #\y) "A")
(check-expect (remove-from "Waterloo" #\o) "Waterl")
(check-expect (remove-from "OOOOO" #\O) "")

;; (remove-from/char loc c) produces a new list, like loc, but with all
;; occurrences of c removed
;; Example:
(check-expect (remove-from/char (string->list "Camera") #\a)

(string->list "Cmer"))

;; remove-from/char: (listof Char) Char -> (listof Char)
(define (remove-from/char loc c)
(cond [(empty? loc) empty]

[(char=? (first loc) c) (remove-from/char (rest loc) c)]
[else (cons (first loc) (remove-from/char (rest loc) c))]))

7 M08: More Lists

7.1 Fixed-length List Accessor Functions

In some cases we model data with fixed-length lists:

;; A PlayerScore is a (list Str Nat)

In these cases it can be helpful to use short helper functions to identify the elements of
the fixed-length lists:

(define (name player-score) (first player-score))

16

(define (points player-score) (second player-score))

Such accessor functions do not require additional design recipe components, but you
may include them if you wish.

8 M11: Mutual Recursion

8.1 Mutually Recursive Functions

If we ask you to write mutually recursive functions, only the function we ask you to
write (the “main function”) requires the full design recipe. Other functions participating
in the mutual recursion need a purpose statement, contract, and at least one example.

9 M13: Local

For functions defined with a local block, no tests or examples are necessary2, however
include the other design recipe elements as illustrated in the following code. Add a
blank line after each local function definition. Add a blank line after each block of
local constant definitions, as you would for non-local constant definitions.

;; (remove-short los len) produces the list of strings in los
;; which are longer than len.
;; Examples:
(check-expect (remove-short empty 4) empty)
(check-expect (remove-short (list "ab" "1234" "hello" "bye") 3)

(list "1234" "hello"))

;; remove-short: (listof Str) Nat -> (listof Str)
(define (remove-short los len)
(local
[;; (long? s) produces true if s has more than len characters
;; long?: Str -> Bool
(define (long? s)
(> (string-length s) len))]

(filter long? los)))

;; Tests
(check-expect (remove-short (list "abc") 4) empty)
(check-expect (remove-short (list "abcdef") 2) (list "abcdef"))
(check-expect (remove-short (list "ab" "1234" "hello" "bye") 1)

(list "ab" "1234" "hello" "bye"))
(check-expect (remove-short (list "ab" "1234" "hello" "bye") 20)

empty)

2It isn’t possible to write a check-expect as part of a local.

17

10 M14, M15: Functions that produce functions
lambda produces functions. It is often used with higher order functions, and to bind
identifiers to values or functions. The design recipe components required depend on the
situation.

10.1 Testing functions that produce functions

When testing a function that produces a function, it can be helpful to define a testing
constant. For example, we might want to test the function make-adder from the notes:

;; Tests
(define add-3 (make-adder 3))
(check-expect (add-3 4) 7)
(check-expect (add-3 0) 3)

In this situation, it is okay to define the constant add-3 for testing inside the design
recipe for make-adder, even though doing so interrupts the design recipe.

Note that you cannot define such a constant before the function definition of make-adder,
so you cannot use this technique for examples. Instead, create functions and test them
within the same check-expect:

;; Examples
(check-expect ((make-adder 3) 4) 7)
(check-expect ((make-adder 3) 0) 3)

10.2 Anonymous functions for higher order functionss

When used to generate anonymous functions for use with higher order functions, no
design recipe components for the lambda expression are required.

;; Design recipe for passing function goes here

(define (passing grade-list)
(filter (lambda (x) (>= x pass-threshold)) grade-list))

Considering the contract of these lambda functions can still be helpful as your expressions
get more complicated, however.

10.3 Binding identifiers

If a lambda expression binds an identifier to a value, then that expression defines a
constant, which does not require design recipe components. For example, if step and
initial-value are in scope, then increment is a constant:

(define increment ((lambda (x) (+ x step)) initial-value))

However, if a lambda expression produces a function, that function requires design recipe
components as if it was defined as a function normally:

18

;; (double x) produces the double of x

;; Example:
(check-expect (double 6.3) 12.6)

;; double: Num -> Num
(define double (lambda (x) (+ x x)))

Sometimes higher order functions with lambda expressions are used to produce constant
values:

(define smalls (filter (lambda (x) (< x (first lon)) lon)))

These constants follow the usual style rules, and do not require additional design recipe
components.

11 A Sample Submission
Problem: Write a Racket function earlier? that consumes two times and will produce
true if the first time occurs earlier in the day than the second time, and false otherwise.

Note how the named constants makes the examples and testing easier, and how the in-
troduction of the time->seconds helper function makes the implementation of earlier?
much more straightforward.

;;
;; **
;; Rick Sanchez (12345678)
;; CS 135 Fall 2024
;; Assignment 03, Problem 1
;; **
;;

(define-struct time (hour minute second))
;; A Time is a (make-time Nat Nat Nat)
;; Requires: 0 <= hour < 24
;; 0 <= minute, second < 60

;; time-template: Time -> Any
(define (time-template t)
(... (time-hour t)

(time-minute t)
(time-second t)))

;; Useful converters
(define seconds-per-minute 60)
(define minutes-per-hour 60)
(define seconds-per-hour (* seconds-per-minute minutes-per-hour))

19

;; Useful constants for examples and testing
(define midnight (make-time 0 0 0))
(define just-before-midnight (make-time 23 59 59))
(define noon (make-time 12 0 0))
(define eight-thirty (make-time 8 30 0))
(define eight-thirty-and-one (make-time 8 30 1))

;; (earlier? time1 time2) Determines if time1 occurs before time2
;; Examples:
(check-expect (earlier? noon just-before-midnight) true)
(check-expect (earlier? just-before-midnight noon) false)

;; earlier?: Time Time -> Bool
(define (earlier? time1 time2)
(< (time->seconds time1) (time->seconds time2)))

;; Tests:
(check-expect (earlier? midnight eight-thirty) true)
(check-expect (earlier? eight-thirty midnight) false)
(check-expect (earlier? eight-thirty eight-thirty-and-one) true)
(check-expect (earlier? eight-thirty-and-one eight-thirty) false)
(check-expect (earlier? eight-thirty-and-one eight-thirty-and-one) false)

;; (time->seconds t) Produces the number of seconds since midnight
;; for the time t
;; Example:
(check-expect (time->seconds just-before-midnight) 86399)

;; time->seconds: Time -> Nat
(define (time->seconds t)
(+ (* seconds-per-hour (time-hour t))

(* seconds-per-minute (time-minute t))
(time-second t)))

20

